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Abstract—In this paper, we develop a notion of controllability
for hypergraphs via tensor algebra and polynomial control
theory. Inspired by uniform hypergraphs, we propose a new
tensor-based multilinear dynamical system representation, and
derive a Kalman-rank-like condition to determine the minimum
number of control nodes (MCN) needed to achieve controllability
of even uniform hypergraphs. We present an efficient heuristic to
obtain the MCN. MCN can be used as a measure of robustness,
and we show that it is related to the hypergraph degree
distribution in simulated examples. Finally, we use MCN to
examine robustness in real biological networks.

Index Terms—Biological networks, controllability, hyper-
graphs, pattern recognition, robustness, tensors.

I. INTRODUCTION

MANY complex systems are studied using a network per-

spective, which offers unique insights in social scien-

ces, cell biology, neuroscience and computer science [1]–[5].

For example, recent advances in genomics technology, such

as genome-wide chromosomal conformation capture (Hi-C),

have inspired us to consider the human genome as a dynamic

network [6]–[8]. Studying such dynamic networks often

requires introducing external inputs into the networks in order

to steer the network dynamics towards a desired state [9]–

[12]. This process is akin to the notion of controllability in

classical control theory. A dynamical system is controllable if

it can be driven from any initial state to any target state within

a finite time given a suitable choice of control inputs.

Controlling complex networks is one of the most challeng-

ing problems in modern network science [13]–[19]. Lin [9]

first proposed the concept of structural controllability of

directed graphs in 1970 s. Later on, Tanner [11] and Rahmani

et al. [20], [21] applied the idea of structural controllability

for multi-agent systems with the aim of selecting a subset of

agents (called leaders) which are able to control the whole sys-

tem by exploiting the graph Laplacian and linear control the-

ory. In particular, Rahmani et al. [20] also showed how the

symmetry structure of a graph directly relates to the controlla-

bility of the corresponding multi-agent system.

In 2011, Liu et al. [13], [22] explored the (structural) con-

trollability of complex graphs with n nodes by using the

canonical linear time-invariant dynamics

_x ¼ AxþBu; (1)

where, A 2 Rn�n is the adjacency matrix of a graph, and B 2
Rn�m is the control matrix. The time-dependent vector x 2
Rn captures the states of the nodes, and u 2 Rm is the time-

dependent control vector. The authors exploited the Kalman

rank condition, i.e., the linear system (1) is controllable if and

only if the controllability matrix

C ¼ B AB . . . An�1B
� �

(2)

has full rank, to determine the minimum number of control

nodes (MCN) in order to achieve full control of the graph (simi-

lar to the role of leaders discussed previously). They also identi-

fied the MCN of a graph using the idea of “maximummatching”

[13]. In addition, Yuan et al. [14] developed a notion of exact

controllability of graphs. They took advantage of the Popov-

Belevitch-Hautus rank condition (i.e., the linear system (1) is

controllable if and only if rankð sI�A B½ �Þ ¼ n for any

complex number s) to prove that for an arbitrary graph, the

MCN is determined by the maximum geometric multiplicity of

the eigenvalues of the corresponding adjacency matrix A. Fur-

thermore, Nacher et al. [23] analyzed MCN required to fully

control multilayer graphs, and a similar notion of exact control-

lability for multilayer graphs is defined in [24].

However, most real world data representations are multidi-

mensional, and using graph (or even multilayer graph) models

to describe them may result in a loss of higher-order informa-

tion [8], [25]. A hypergraph is a generalization of a graph in

which its hyperedges can join any number of nodes [26]–[29].

Thus, hypergraphs can capture multidimensional relationships

unambiguously [25]. Examples of hypergraphs include co-

authorship networks, film actor/actress networks, and protein-

protein interaction networks [30]. Moreover, a hypergraph can

be represented by a tensor if its hyperedges contain the same

number of nodes, referred to as a uniform hypergraph [8].

Tensors are multidimensional arrays generalized from vectors

and matrices that preserve multidimensional patterns and cap-

ture higher-order interactions and coupling within multiway

data [31]. The dynamics of uniform hypergraphs thus can be
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naturally described by a tensor-based multilinear system (mul-

tilinear in the sense of multilinear algebra).

Multilinear dynamical systems were first proposed by Rog-

ers et al. [32] and Surana et al. [33] where the system evolu-

tion is generated by the action of multilinear operators which

are formed using Tucker products of matrices. Chen et al. [34]

developed the tensor algebraic conditions for stability, reach-

ability and observability for input/output multilinear time-

invariant systems. By using tensor unfolding, an operation

that transforms a tensor into a matrix, a multilinear system can

be unfolded to a corresponding linear system. However, the

tensor-based multilinear systems, proposed in this paper, are

different from the ones defined in [32]–[34], and in fact they

belong to the family of nonlinear polynomial systems. Hence,

they can capture network dynamics more precisely than sys-

tems based on standard graphs which use linear dynamics

assumption. Basic knowledge of nonlinear control concepts

such as Lie algebra and Lie brackets is required in order to bet-

ter understand the controllability of such systems. The key

contributions of this paper are as follows:

� We propose a new tensor-based multilinear system

representation inspired by uniform hypergraphs, and

study the controllability of such systems by exploiting

tensor algebra and polynomial control theory. We estab-

lish a Kalman-rank-like condition to determine the con-

trollability of even uniform hypergraphs.

� We establish theoretical results on the MCN of even

uniform hyperchains, hyperrings and hyperstars as well

as complete even uniform hypergraphs. We also

observe that the MCN of odd uniform hypergraphs,

identified by the Kalman-rank-like condition, behaves

similarly to that of even uniform hypergraphs in simu-

lated examples (although the condition is not applicable

in terms of controllability). We discover that MCN is

related to the hypergraph degree distribution, and high

degree nodes are preferred to be controlled in these con-

figurations and their variants.

� We propose MCN as a measure of robustness for uni-

form hypergraphs, and use it to quantify structural dif-

ferences. We present applications to two real world

biological examples: a mouse neuron endomicroscopy

dataset and an allele-specific Hi-C dataset.

� We present a fast and memory-efficient computational

framework for determining the rank of a matrix related

to the Kalman-rank-like condition for nonlinear control-

lability. In addition, we propose a heuristic approach to

identify the MCN of uniform hypergraphs efficiently.

� We perform preliminary explorations of the controlla-

bility of general non-uniform hypergraphs.

The paper is organized into seven sections. We start with

the basics of tensor algebra in Section II-A. In Section II-B,

we discuss the notion of uniform hypergraphs and extend the

definitions of chains, rings and stars from graph theory to uni-

form hypergraphs. We propose a new tensor-based multilinear

system to capture the dynamics of uniform hypergraphs in

Section III-A. We then formulate a Kalman-rank-like condi-

tion to determine the controllability of even uniform

hypergraphs in Section III-B. We establish theoretical results

on the MCN of even uniform hyperchains, hyperrings and

hyperstars as well as complete even uniform hypergraphs in

Section III-C. In Section IV, we argue that MCN can be used

to measure hypergraph robustness, and provide a heuristic

approach to find the MCN efficiently. Five numerical exam-

ples are presented in Section V. Finally, we discuss the con-

trollability of general hypergraphs in Section VI and conclude

with future directions in Section VII.

II. PRELIMINARIES

A. Tensors

We take most of the concepts and notations for tensor alge-

bra from the comprehensive works of Kolda et al. [35], [36].

A tensor is a multidimensional array. The order of a tensor is

the number of its dimensions, and each dimension is called a

mode. A k-th order tensor usually is denoted by T 2
Rn1�n2�����nk . It is therefore reasonable to consider scalars x 2
R as zero-order tensors, vectors v 2 Rn as first-order tensors,

and matrices M 2 Rm�n as second-order tensors. A tensor is

called cubical if every mode is the same size, i.e., T 2
Rn�n�����n. A cubical tensor T is called supersymmetric if

Tj1j2...jk is invariant under any permutation of the indices.

The tensor vector multiplication T�p v along mode p for a

vector v 2 Rnp is defined by

ðT�p vÞj1j2...jp�1jpþ1...jk
¼

Xnp
jp¼1

Tj1j2...jp...jkvjp ; (3)

which can be extended to

T�1 v1 �2 v2 �3 v3 . . .�k vk ¼ Tv1v2v3 . . .vk 2 R (4)

for vp 2 Rnp . The expression (4) is also known as the homo-

geneous polynomial associated with T. If vp ¼ v for all p, we
write (4) as Tvk for simplicity.

B. Uniform Hypergraphs

We borrow some fundamental concepts of hypergraphs

from the works [37]–[40]. An undirected hypergraph G is a

pair such that G ¼ fV;Eg where V ¼ f1; 2; . . . ; ng is the

node set and E ¼ fe1; e2; . . . ; epg is the hyperedge set with

el � V for l ¼ 1; 2; . . . ; p. Two nodes are called adjacent if

they are in the same hyperedge. A hypergraph is called con-

nected if, given two nodes, there is a path connecting them

through hyperedges. If all hyperedges contain the same num-

ber of nodes, i.e., jepj ¼ k for k � n, G is called a k-uniform
hypergraph. Here j � j denotes the cardinality of a set. A k-uni-
form hypergraph can be represented by a k-th order n-dimen-

sional supersymmetric tensor.

Definition 1 ([37]–[40]): Let G = {V, E} be a k-uniform
hypergraph with n nodes. The adjacency tensor A 2
Rn�n�����n of G, which is a k-th order n-dimensional super-

symmetric tensor, is defined as
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Aj1j2...jk ¼
1

ðk�1Þ! if ðj1; j2; . . . ; jkÞ 2 E

0; otherwise

8<
: : (5)

Similarly to standard graphs, the degree of node j of a uni-
form hypergraph is defined as

dj ¼
Xn
j2¼1

Xn
j3¼1

. . .
Xn
jk¼1

Ajj2j3...jk : (6)

Note that the choice of the nonzero coefficient 1
ðk�1Þ! in (5)

guarantees that the degree of each node is equal to the

number of hyperedges that contain that node, which is con-

sistent with the notion of degree in standard graphs. More-

over, the controllability framework we develop in

Section III-B can be applied to arbitrary weighted uniform

hypergraphs, see Section VI. The degree distribution of a

hypergraph is the distribution of the degrees over all

nodes. If all nodes have the same degree d, then G is

called d-regular. Given any k nodes, if they are contained

in one hyperedge, then G is called complete. In the follow-

ing, we extend the definitions of chains, rings and stars

from graph theory to uniform hypergraphs.

Definition 2: A k-uniform hyperchain is a sequence of n
nodes such that every k consecutive nodes are adjacent, i.e.,

nodes j; jþ 1; . . . ; jþ k� 1 are contained in one hyperedge

for j ¼ 1; 2; . . . ; n� kþ 1.
Definition 3: A k-uniform hyperring is a sequence of n

nodes such that every k consecutive nodes are adjacent, i.e.,

nodes snðjÞ; snðjþ 1Þ; . . . ; snðjþ k� 1Þ are contained in

one hyperedge for j ¼ 1; 2; . . . ; n, where snðjÞ ¼ j for j � n
and snðjÞ ¼ j� n for j > n.
Definition 4: A k-uniform hyperstar is a collection of k� 1

internal nodes that are contained in all the hyperedges, and

n� kþ 1 leaf nodes such that every leaf node is contained in

one hyperedge with the internal nodes.

In k-uniform hyperchains, hyperrings and hyperstars, every

two hyperedges have exactly k� 1 overlapping nodes, see

Fig. 1. When k ¼ 2, they are reduced to standard chains, rings

and stars. We will determine the minimum number of control

nodes (MCN) of uniform hyperchains, hyperrings and hyper-

stars in Section III-C.

III. HYPERGRAPH CONTROLLABILITY

A. Uniform Hypergraph Dynamics

We represent the dynamics of a k-uniform hypergraph G
with n nodes by multilinear time-invariant differential equa-

tions using the adjacency tensor of G.

Definition 5: Given a k-uniform hypergraph G with n
nodes, the dynamics of G with control inputs can be repre-

sented by

_x ¼ Axk�1 þ
Xm
j¼1

bjuj; (7)

where, A 2 Rn�n�����n is the adjacency tensor of G, and B ¼
b1 b2 . . . bm½ � 2 Rn�m is the control matrix.

In this paper, we consider the case in which each input can

only be imposed at one node, i.e., bj are the scaled standard

basis vectors, similar to the treatments in [13], [14]. The time-

dependent vector x captures the state of the n nodes, and the

system is controlled using the time-dependent input vector

u ¼ u1 u2 . . . um½ �>2 Rm. The multilinear system (7)

formulated by the tensor vector multiplications is indeed able

to capture the simultaneous interactions among nodes for uni-

form hypergraphs as illustrated in Fig. 2. All the interactions

are characterized using multiplications instead of the additions

that are typically used in a standard graph. It is known that

multiplication often stands for simultaneity and addition for

sequentiality in many mathematical fields. For example, the

probability of two independent events to happen at the same

time is equal to the product of their individual probabilities. A

similar form of nonlinear dynamical system representation has

been used to model protein-protein interaction [41], which as

mentioned can be represented by hypergraphs. Compared to

the dynamical systems of hypergraphs defined in [42], [43],

our model (7) is simpler and retains the higher-order coupling

information. More significantly, we can discuss the controlla-

bility of such systems. In the next subsection, we will establish

a Kalman-rank-like condition by exploiting nonlinear control

theory.

B. Controllability of Uniform Hypergraphs

If one rewrites the tensor vector multiplications in the mul-

tilinear system (7) explicitly as in Fig. 2 B, the drift term

Axk�1 is in fact a homogeneous polynomial system of degree

k� 1. The controllability of polynomial systems was studied

extensively back in 1970s and 80s [44]–[47]. In particular,

Fig. 1. Examples of hyperchains, hyperrings and hyperstars. (A) 3-uniform
hyperchain with e1 ¼ f1; 2; 3g and e2 ¼ f2; 3; 4g. (B) 3-uniform hyperring
with e1 ¼ f1; 2; 3g, e2 ¼ f2; 3; 4g, e3 ¼ f3; 4; 5g, e4 ¼ f4; 5; 6g, e5 ¼
f5; 6; 1g and e6 ¼ f6; 1; 2g. (C) 3-uniform hyperstar with e1 ¼ f1; 2; 3g, e2 ¼
f2; 3; 4g, e3 ¼ f2; 3; 5g, e4 ¼ f2; 3; 6g and e5 ¼ f2; 3; 7g.

Fig. 2. Graphs versus uniform hypergraphs. (A) Standard graph with three
nodes and edges e1 ¼ f1; 2g, e2 ¼ f2; 3g and e3 ¼ f1; 3g, and its correspond-
ing linear dynamics. (B) 3-uniform hypergraph with three nodes and a hyper-
edge e1 ¼ f1; 2; 3g, and its corresponding nonlinear dynamics.
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Jurdjevic and Kupka [44] obtained strong results in terms of

the controllability of homogeneous polynomial systems with

constant input multipliers (i.e., bj are constant vectors).

Definition 6 ([44]): A dynamical system is called strongly

controllable if it can be driven from any initial state to any tar-

get state in any instant of positive time given a suitable choice

of control inputs.

Theorem 1 ([44]): Consider the following system

_x ¼ fðxÞ þ
Xm
j¼1

bjuj: (8)

Suppose that f is a homogeneous polynomial system of odd

degree. Then the system (8) is strongly controllable if and

only if the rank of the Lie algebra spanned by the set of vector

fields ff ;b1;b2; . . . ;bmg is n at all points of Rn. Moreover,

the Lie algebra is of full rank at all points of Rn if and only if

it is of full rank at the origin.

The rank of the Lie algebra can be found by evaluating the

recursive Lie brackets of ff ;b1;b2; . . . ;bmg at the origin.

The Lie bracket of two vector fields f and g at a point x is

defined as

½f ;g�x ¼ rgðxÞfðxÞ � rfðxÞgðxÞ; (9)

where, r is the gradient operation. Detailed definitions of Lie

algebra and Lie brackets can be found in any differential

geometry textbook. Based on Theorem 1, we can derive a Kal-

man-rank-like condition for the tensor-based multilinear sys-

tem (7).

Definition 7: Let C 0 be the linear span of fb1;b2; . . . ;bmg
and A 2 Rn�n�����n be a supersymmetric tensor. For each inte-

ger q 	 1, define C q inductively as the linear span of

C q�1 [ fAv1v2 . . .vk�1jvl 2 C q�1g: (10)

Denote the subspace C ðA;BÞ ¼ [q	0C q where B ¼ b1; b2½
. . .bm� 2 Rn�m.

Corollary 1: Suppose that k is even. The multilinear system

(7) is strongly controllable if and only if the subspace C ðA;BÞ
spans Rn, or equivalently, the matrix C, including all the col-

umn vectors from C ðA;BÞ, has rank n.
Proof: We show that C ðA;BÞ consists of all the recursive

Lie brackets of fAxk�1;b1;b2; . . . ;bmg at the origin. Without

loss of generality, assume that m ¼ 1. Since A is supersym-

metric, the recursive Lie brackets are given by (we omit all

the scalars in the calculation)

½b;Axk�1�0 ¼
� d

dx

���
x¼0

Axk�1
�
b ¼ 0;

½b; ½b;Axk�1��0 ¼
� d

dx

���
x¼0

Axk�2bÞb ¼ 0;

..

.

½b; ½. . . ; ½½b;Axk�1����0 ¼
� d

dx

���
x¼0

Axbk�2
�
b ¼ Abk�1:

We then repeat the recursive process for the brackets

½Abk�1;Axk�1�, ½Abk�1;Axk�2b�, . . . , ½Abk�1;Axbk�2� in the

second iteration. After the q-th iteration for some q, the

subspace C ðA;BÞ contains all the Lie brackets of the vec-

tor fields fAxk�1;bg at the origin. Lastly, when k is even,

the drift term Axk�1 is a family of homogeneous polyno-

mial fields of odd degree. Based on Theorem 1, the result

follows immediately. &

Corollary 2: Given the subspace C ðA;BÞ ¼ [q	0C q, there

exists an integer q � n such that C ðA;BÞ ¼ C q.

Proof: The proof follows immediately from the fact that

C ðA;BÞ is a finite-dimensional vector space [44]. &

We can treat the matrix C as the controllability matrix

of the multilinear system (7). When k ¼ 2 and q ¼ n� 1,
Corollary 1 is reduced to the famous Kalman rank condi-

tion for linear systems. However, computing the controlla-

bility matrix can be computationally demanding as the

number of columns of C grows exponentially with k. In

Algorithm 1, we offer a memory-efficient approach to

obtain a reduced form of the controllability matrix,

denoted by Cr, by exploiting the economy-size matrix

SVD. Step 2 is referred to as the 1-mode tensor unfolding

(matrization) defined in [35]. Here 
 denotes the Kro-

necker product, and Step 5 can be computed fast without

evaluating the actual Kronecker products of Cr [48]. One

may also exploit the sparse tensor/matrix structure to fur-

ther save the computation and memory.

Lemma 1: Suppose thatA 2 Rn�nk�1
is defined as in Algo-

rithm 1, and X 2 Rn�m is an arbitrary matrix with rank s.
Then the following two matrices

P ¼ AðX
X
 � � �k�1 
XÞ 2 Rn�mk�1
;

Q ¼ AðU
U
 � � �k�1 
UÞ 2 Rn�sk�1
;

share the same column space, where U 2 Rn�s is the matrix

including the first s left singular vectors ofX.

Proof: Without loss of generality, assume that k ¼ 3. Sup-
pose that X ¼ USV> with U 2 Rn�s. Based on the proper-

ties of the Kronecker product, one can write

Algorithm 1. Computing the reduced controllability matrix.

1: Given a supersymmetric tensor A 2 Rn�n�����n and a control

matrixB 2 Rn�m

2: Unfold A into a matrix A by stacking the last k� 1 modes, i.e.,

A 2 Rn�nk�1

3: SetCr ¼ B and j ¼ 0
4: while j < n do

5: Compute L ¼ AðCr 
Cr
 � � �k�1 
CrÞ
6: SetCr ¼ Cr L½ �
7: Compute the economy-size SVD of Cr, and remove the zero

singular values, i.e., Cr ¼ USV> where S 2 Rs�s, and s is

the rank ofCr

8: SetCr ¼ U, and j ¼ jþ 1
9: end while

10: return The reduced controllability matrixCr.
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P ¼ A½ðUSV>Þ 
 ðUSV>Þ�
¼ A½ðU
UÞðS
 SÞðV
VÞ>�
¼ Q½ðS
 SÞðV
VÞ>� ¼ Q~S ~V>;

where, ~S ¼ S
 S 2 Rs2�s2 is a diagonal matrix and ~V ¼
V
V 2 Rm2�s2 is a semi-orthogonal matrix. Thus, it follows

immediately thatP andQ share the same column space. &

Proposition 1: The column space of the reduced controlla-

bility matrixCr is C ðA;BÞ.
Proof: The result follows immediately from Lemma 1 and

Corollary 2. &

Remark 1: The controllability of homogeneous polyno-

mial systems of even degree is still an open problem to

best of authors knowledge [49], [50]. The reason is inti-

mately related to the fact that the roots of polynomial sys-

tems of even degree might all be complex [49]. Therefore,

we cannot guarantee the condition for controllability of

odd uniform hypergraphs using Corollary 1. Nevertheless,

a weaker form of controllability, called (local) accessibil-

ity, can be obtained for the multilinear system (7) with

odd k based on the Kalman-rank-like condition.

Given x0 2 Rn and control inputs, define R ðx0; tÞ to be the

set of all x 2 Rn for which the system can be driven from x0

to x at time t.
Definition 8 ([51]): A dynamical system is called accessi-

ble if for any initial state x0 2 Rn and T > 0, the reachable

set R T ðx0Þ ¼ [0�t�TR ðx0; tÞ contains a nonempty open set.

The accessibility of a control system requires only that

the reachable set from a given point contains a nonempty

open set, rather than being equal to the whole space Rn

(required for strong controllability). Accessibility holds at

a point if the span of the smallest Lie algebra of vector

fields containing the drift and input vector fields is Rn at

that point [51].

Corollary 3: The multilinear system (7) is accessible if the

subspace C ðA;BÞ spans Rn, or equivalently, the matrix C,

including all the column vectors from C ðA;BÞ, has rank n.
Proof: The smallest Lie algebra of vector fields containing

Axk�1 and b1; . . . ;bm at the origin is C ðA;BÞ by Corollary 1.

Based on the second part of Theorem 1 (i.e., the Lie algebra is

of full rank at all points of Rn if and only if it is of full rank at

the origin), the result follows immediately. &

C. MCN of Special Hypergraphs

According to Corollary 1 and 2, we can discuss the control-

lability of even uniform hypergraphs. Similarly to [13], [14],

we want to determine the MCN, denoted by n�, whose control
is sufficient for achieving controllability of the hypergraph.

For example, let’s consider the simplest even uniform hyper-

graph, i.e., the 4-uniform hypergraph with four nodes. We find

that the MCN of this hypergraph is three based on the Kal-

man-rank-like condition, see Fig. 3. More significantly, we

discover that the MCN of even uniform hyperchains, hyperr-

ings and hyperstars as well as complete even uniform hyper-

graphs behaves similarly to those of chains, rings, stars and

complete graphs.

Proposition 2: Suppose that k is even. If G is a k-uniform
hyperchain with n nodes, then the MCN of G is given by

n� ¼ k� 1.
Proof: We first show that when the number of control

inputs m ¼ k� 2, G is never controllable. Based on the defi-

nition of tensor vector multiplication and the special structure

of the adjacency tensor, it can be shown that for any choice of

the control matrix B withm ¼ k� 2,

Abj1bj2 . . .bjk�1
¼ 0;

where, A is the adjacency tensor of G. This is because the set

of vectors bjl must contain a duplicate for one l ¼
1; 2; . . . ; k� 1. Therefore, the controllability matrix C has

rank k� 2, and G is not controllable. Next, we present one

control strategy withm ¼ k� 1.
Assume that the first k� 1 nodes are controlled, and bj is

associated with the node j for j ¼ 1; 2; . . . ; k� 1. Let

bj ¼ Abj�kþ1bj�kþ2 . . .bj�1

for j ¼ k; kþ 1; . . . ; n. Similarly, it can be shown that the fol-

lowing matrix

b1 b2 . . . bn½ � 2 Rn�n

is upper triangular with nonzero entries along the diagonal.

Hence, the controllability matrix C has rank n, and the MCN

of G is k� 1. &

Proposition 3: Suppose that k is even and k 	 4. If G is a

k-uniform hyperring with n nodes and n > kþ 1, then the

MCN of G is given by n� ¼ k� 1.
Proof: We first note that when n ¼ kþ 1, G is complete,

see Proposition 5 below. For n > kþ 1, the first part of the

proof follows in exactly the same fashion as in Proposition 2.

Moreover, due to the special structure of the adjacency tensor

and the definition of tensor vector multiplication, it is straight-

forward to show that for k 	 4, controlling the first k� 1
nodes will be enough to make the rank of the controllability

matrix C equal to n. Therefore, the MCN of G is k� 1. &

Proposition 4: Suppose that k is even. If G is a k-uniform
hyperstar with n nodes and n > k, then the MCN of G is

given by n� ¼ n� 2.
Proof: We first note that when n ¼ k, G is a uniform

hyperchain. For n > k, we show that when the number of

control inputs m ¼ n� 3, G is never controllable. Let mint

denote the number of control inputs selected from the set of

Fig. 3. Controllability matrix. 4-uniform hypergraph with four nodes and a
hyperedge f1; 2; 3; 4g, and its controllability matrixC.
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the internal nodes. Then m�mint is the number of control

inputs selected from the set of the leaf nodes. According to the

definition of tensor vector multiplication and the special struc-

ture of the adjacency tensor, it can be shown that

Case 1:Whenmint ¼ k� 1, rankðCÞ ¼ n� 2;
Case 2:Whenmint ¼ k� 2, rankðCÞ ¼ n� 1;
Case 3:When 0 � mint < k� 2, rankðCÞ ¼ n� 3.

Therefore, G is not controllable. However, if one adds one

more input from the set of the leaf nodes in Case 2, the rank of

the controllability matrix C will reach n. Hence, the MCN of

G is n� 2. &

Proposition 5: Suppose that k is even. If G is a complete

k-uniform hypergraph with n nodes, then the MCN of G is

given by n� ¼ n� 1.
Proof: We first show that when the number of control

inputs m ¼ n� 2, G is never controllable. Without loss of

generality, assume that the first n� 2 nodes are controlled,

and bj is associated with the node j for j ¼ 1; 2; . . . ; n� 2.
According to the definition of tensor vector multiplication and

the fact that G is complete, it can be shown that all the column

vectors in the controllability matrix C have the last two entries

equal. Thus, the rank of C is equal to n� 1, and G is not con-

trollable. However, when the first n� 1 nodes are controlled,

the last node can be easily reached by any combination of ðk�
1Þ bj for j ¼ 1; 2; . . . ; n� 1 since G is complete, and the con-

trollability matrix C has rank n. Therefore, the MCN of G is

n� 1. &

Proposition 2, 4 and 5 are valid when k ¼ 2 where the MCN

of chains, stars and complete graphs are equal to 1, n� 2 and

n� 1, respectively. Similarly to rings, the MCN of even uni-

form hyperrings does not depend on n. However, Proposition
3 does not hold for k ¼ 2 because the pairwise transitions

between nodes would produce linearly dependent relations in

the standard rings. Furthermore, we discover that the MCN of

odd uniform hyperchains, hyperrings and hyperstars as well as

complete odd uniform hypergraphs, identified by the Kalman-

rank-like condition, follows exactly the same patterns as stated

in Proposition 2 to 5 even though the condition only offers

accessibility, see Section V-B. Nonetheless, controllability or

accessibility of a uniform hypergragh is closely associated to

its underlying architecture, and the MCN can be used to quan-

tify some topological attributes of a uniform hypergraph.

IV. HYPERGRAPH ROBUSTNESS

Network robustness is the ability of a network to survive

from random failures or deliberate attacks (e.g., removal of

nodes or edges) [52]–[54]. It is intimately related to the under-

lying network structure/topology. Many measures have been

proposed to quantify the robustness of a graph, and one of the

popular measures is called effective resistance [55], [56]. We

propose MCN as a measure of hypergraph robustness since it

can provide insights into the topology and connectivity of uni-

form hypergraphs according to their controllability or accessi-

bility. Intuitively, if the MCN of a uniform hypergraph is

high, it will take more effort/energy to control the hypergraph

or steer the underlying system.

In Section V-A and V-B, we will determine the MCN of

even and odd uniform hyperchains, hyperrings and hyperstars,

and their different variants in simulated datasets. As expected,

the rules for selecting the minimum subset of “control nodes”

of odd uniform hypergraphs associated with the MCN follow

the same patterns as these of even uniform hypergraphs. More

interestingly, we find that the MCN of these configurations are

related to their degree distributions, and the high degree nodes

are often preferred as control nodes.

A. Control Nodes Selection With MCN

In order to measure the robustness of uniform hypergraphs,

we need to efficiently determine their MCN. However, finding

the MCN of uniform hypergraphs using a brute-force search

will be computationally demanding. We provide a heuristic

approach for estimating the minimum subset of control nodes

of a uniform hypergraph in which nodes are chosen based on

the maximum change in the rank of the reduced controllability

matrix, see Algorithm 2. Here CD denotes the reduced con-

trollability matrix formed from the inputs in the index set D,

and can be computed using Algorithm 1. If a uniform hyper-

graph is non-connected, we can first identify the connected

components (which can be defined similarly as in graphs), and

then apply the algorithm to each component. In Step 7, if mul-

tiple s� are obtained, we can pick one randomly, or use some

other conditions to break the tie, e.g., by selecting the node

with the highest degree. It turns out that Algorithm 2 with

high likelihood can find the MCN of a medium-sized uniform

hypergraph, and it is much faster than a brute-force search,

see Section V-E.

V. NUMERICAL EXAMPLES

All the numerical examples presented were performed on a

Linux machine with 16 GB RAM and a 2.0 GHz Quad-Core

Intel Core i5 processor in MATLAB R2020a.

A. Even Uniform Hypergraphs

Recall that in k-uniform hyperchains, hyperrings and hyper-

stars, every hyperegde has exactly k� 1 overlapping nodes.

However, for k 	 3, one can relax this requirement allowing

number of overlapping nodes between hyperedges to vary, and

Algorithm 2. Greedy Control Nodes Selection with MCN.

1: Given a supersymmetric tensor A 2 Rn�n�����n

2: Let S ¼ f1; 2; . . . ; ng andD ¼ ;
3: while rankðCDÞ < n do

4: for s 2 S nD do

5: Compute DðsÞ ¼ rankðCD[fsgÞ � rankðCDÞ using Algo-

rithm 1

6: end for

7: Set s� ¼ argmaxs2SnDDðsÞ
8: SetD ¼ D [ fs�g
9: end while

10: return A subset of control nodesD.
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obtain variants of the three configurations. We consider the

case where every intersection between hyperedges contains r
nodes for 0 < r < k� 1, and denote these variants by

r-hyperchains, r-hyperrings and r-hyperstars. Note that k-uni-
form hyperchains, hyperrings and hyperstars are the cases

where r ¼ k� 1. Uniform hyperchains, hyperrings and hyper-

stars, and their different variants have many applications in real

life. For example, we can use them to model complex networks

such as computer networks, supply chains and organizational

hierarchy. Understanding the control mechanisms of these con-

figurations will be greatly beneficial for achieving network

security, efficient communications and energy savings.

In this example, we determine the MCN of 4-uniform

hyperchains, hyperrings and hyperstars, and their variants.

The results are shown in Fig. 4. We only present the most rep-

resentative minimum subset of control nodes for each configu-

ration. First, the MCN of 4-uniform hyperchains, hyperrings

and hyperstars is consistent with the results stated in Proposi-

tion 2 to 4. Controlling 4-uniform hyperchains and hyperrings

only requires control of three nodes, and controlling 4-uniform

hyperstars requires control of n� 2 nodes, see Fig. 4 C, F and

I. Moreover, we discover that the MCN of these configurations

is related to their degree distributions. Intuitively, controlling

the high degree nodes is the easiest and most natural way for

achieving hypergraph control. In particular, all the hypergraph

configurations in Fig. 4 contain at least one control node with

the highest degree in the corresponding degree distributions.

For 4-uniform 1-hyperchains, 1-hyperrings and 1-hyperstars,

in which there is one common node between hyperedges, the

MCN can be achieved when all the 2-degree nodes are con-

trolled with each hyperedge having three control nodes, see

Fig. 4 A, D and G. Furthermore, the control strategies for 4-

uniform 2-hyperchains, 2-hyperrings and 2-hyperstars, in

which there are two common nodes between hyperedges, are

more like some combinations of the previous two, which also

require controlling nodes with the highest degree, see Fig. 4

B, E and H. However, it is possible that low degree nodes can

accomplish the same goal. For example, the minimum subset

of control nodes f1; 2; 3; 5; 6; 8; 9g can also achieve the full

control of the 1-hyperchain with ten nodes.

We summarize theMCN of 4-uniform 1-, 2-hyperchains, 1-,2-

hyperrings and 1-,2-hyperstars with n nodes in Table I (column

n�
4-unif) based on our observations (i.e., they are not proved).

Interestingly, for cases of 2-hyperchains, 2-hyperings and 2-

hyperstars, we find that the MCN is nþ2
2 . Whether this results

hold in general needs to be further investigated. Moreover, one

may easily obtain the MCN of some hybrids of uniform hyper-

chians, hyperrings and hyperstars, and their variants according to

the control strategies discussed above.

B. Odd Uniform Hypergraphs

The goal of this example is to determine the MCN of 3-

uniform hyperchains, hyperrings and hyperstars, and their

variants using the Kalman-rank-like condition even though

the condition only offers accessibility for these configura-

tions. The results are shown in Fig. 5. The rules for select-

ing the minimum subset of “control nodes” of 3-uniform

hyperchains, hyperrings and hyperstars, and their variants

follow the same patterns as these discussed in Section V-

A. The MCN of 3-uniform hyperchains, hyperrings and

hyperstars are matched with the results stated in Proposi-

tion 2 to 4 despite k being odd, see Fig. 5 B, D and F.

Moreover, for 3-uniform 1-hyperchains, 1-hyperrings and

1-hyperstars, in which there is one common node between

hyperedges, the MCN can be achieved when all the 2-

degree nodes are “controlled” with each hyperedge having

Fig. 4. MCN of 4-uniform hyperchains, hyperrings and hyperstars, and their
variants. (A), (B) and (C) 4-uniform 1-hyperchains, 2-hyperchains and hyper-
chains. (D), (E) and (F) 4-uniform 1-hyperrings, 2-hyperrings and hyperrings.
(G), (H) and (I) 4-uniform 1-hyperstars, 2-hyperstars and hyperstars. The
nodes with arrows are denoted as the control nodes, and the cyan arrows indi-
cate the control nodes with highest degrees in the configurations.

TABLE I
MCN OF THE VARIANTS OF 4- AND 3-UNIFORM HYPERCHAINS, HYPERRINGS

AND HYPERSTARS BASED ON OUR OBSERVATIONS. NOTE THAT 3-UNIFORM

2-HYPERCHAINS, 2-HYPERRINGS AND 2-HYPERSTARS ARE THE 3-UNIFORM

HYPERCHAINS, HYPERRINGS AND HYPERSTARS
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two “control nodes,” see Fig. 5 A, C and E. Similarly, we

can conclude that the MCN of these configurations are

related to their degree distributions. We summarize the

MCN of 3-uniform hyperchains, hyperrings and hyperstars,

and their variants with n nodes in Table I (column n�
3-unif )

based on our observations. Again, we want to remark that

although the “control nodes” of 3-uniform hypergraphs

may not have physical interpretations in terms of controlla-

bility, the MCN can be used to measure hypergraph

robustness and detect structural changes, as shown in the

following example.

C. Mouse Neuron Endomicroscopy

The mouse endomicroscopy dataset is an imaging video

created under 10-minute periods of feeding, fasting and re-

feeding using fluorescence across space and time in a mouse

hypothalamus [8], [57]. Twenty neurons are recorded with

individual levels of “firing”. Similar to [8], we want to quanti-

tatively differentiate the three phases using 3-uniform hyper-

graphs with MCN. First, we compute the multi-correlation

among every three neurons, which is defined by

r ¼ ð1� det ðRÞÞ12; (11)

where, R 2 R3�3 is the correlation matrix of three neuron

activity levels [58]. When the multi-correlation r is greater

than a prescribed threshold, we build hyperedges among the

three neurons.

The results are shown in Fig. 6, in which (A), (B) and (C)

are network diagrams modelled by 3-uniform hypergraphs for

a representative mouse depicting the spatial location and size

of individual cells (every 2-simplex is a hyperedge). It is evi-

dent from Fig. 6 D that the hypergraph MCN (blue) can suc-

cessfully differentiate the three phases with different food

treatments under the cutoff threshold 0.95. In particular, the

fasting phase requires more neurons to be “controlled” due to

fewer connections, while in the re-fed phase, the MCN is sig-

nificantly reduced because of an outburst of neuron interac-

tions. On the other hand, the MCN (red in Fig. 6 D) computed

from the graph model fails to capture the changes in neuronal

activity. The threshold 0.95 in the graph model is too high to

produce any connection. This supports the fact that more than

two neurons synchronize, or “co-fire,” in the mouse hypothal-

amus, and the interactions can be more accurately captured by

hypergraphs. Note that our choice of the prescribed threshold

is arbitrary, though higher values are desirable as they capture

stronger neuronal interactions as the relevant edges/hyeredges.

To assess the sensitivity, we also performed our MCN analysis

Fig. 5. MCN of 3-uniform hyperchains, hyperrings and hyperstars, and their
variants. (A) and (B) 3-uniform 1-hyperchains and hyperchains. (C) and (D)
3-uniform 1-hyperrings and hyperrings. (E) and (F) 3-uniform 1-hyperstars
and hyperstars. The nodes with arrows are denoted as the control nodes, and
the cyan arrows indicate the control nodes with the highest degrees in the
configurations.

Fig. 6. Mouse neuron endomicroscopy features. (A), (B) and (C) Neuronal
activity networks of the three phases - fed, fast and re-fed, which depicts the
spatial location and size of individual cells. Each 2-simplex (i.e., a triangle)
represents a hyperedge, and red arrows indicate those control nodes. (D) MCN
for the neuronal activity networks modelled by 3-uniform hypergraphs and
standard graphs. The cutoff threshold is 0.95 for both the hypergraph and
graph models.
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for values of threshold in the range from 0.90 to 0.95 and

found similar qualitative results.

D. Allele-Specific Chromosomal Conformation Capture

Studies have revealed that there is significant coordination

between allelic gene expression biases and local genome

architectural changes [59]. The unbiased genome-wide tech-

nology of chromosome conformation capture (Hi-C) has been

used to capture the architecture of the genome through the cell

cycle [6], [7], [60]. The notion of transcription factories sup-

ports the existence of simultaneous interactions involving

multiple genomic loci [61], implying that the human genome

configuration can be represented by a hypergraph [8]. In the

example, we are given Hi-C data for a small region of chromo-

some 15 (100 kb bin resolution) which contains two imprinted

genes (SNRPN and SNURF). Imprinted genes are known to

only express from one allele, so we want to explore any corre-

sponding differences in local genome architecture [62]. Here

we use 4-uniform hypergraphs to partially recover the 3D con-

figuration of the genome according to the multi-correlation

(11) from the Hi-C matrices.

The results are shown in Fig. 7. Clearly, it is hard to tell the

difference between the maternal and paternal genome archi-

tectures directly from the Hi-C maps, see Fig. 7 A and B.

However, after converting to hypergraphs, we can easily

detect the structural discrepancy using the notion of MCN in

the cell cycle phases G1 and S, see Fig. 7 C. Although the

MCN are equal between the maternal and paternal networks

in the cell cycle phase G2, the maximum possible choices of

minimum subsets of control nodes are different (one is

twenty four, and one is thirty three). This indicates that there

are some architectural similarities between the maternal and

paternal architectures in G2 compared to the previous two

phases. Furthermore, we corroborate our results by using the

notion of tensor entropy. Tensor entropy is a spectral mea-

sure, which can decipher topological attributes of uniform

hypergraphs [8]. In particular, the two results of tensor

entropy and MCN are consistent, in the sense that the largest

gap of tensor entropy between the maternal and paternal

architectures occurs in S, and the smallest gap occurs in G2,

see Fig. 7 D. Biologically, in S phase, DNA replication of

the genomes may lead to a large structural dissimilarity

between the maternal and paternal architectures, while in the

G2 phase, both genomes prepare for mitosis which may

result in a small structural discrepancy. Moreover, we believe

that the control loci (nodes) can play a significant role in cel-

lular reprogramming, a process that introduces proteins called

transcription factors as a control mechanism for transforming

one cell type into another.

E. MCN Computation Comparison

In this example, we compare the computational efficiency

of the heuristic approach described in Algorithm 2 and brute-

force search in finding the MCN of random 4-uniform hyper-

graphs (with hyperedge density 50%) and complete 4-uniform

hypergraphs. The results are shown in Fig. 8. Evidently, Algo-

rithm 2 is more time-efficient than a brute-force search as the

number of nodes becomes larger in both the configurations. In

particular, when a uniform hypergraph is complete (or nearly

complete), the heuristic exhibits a huge time advantage. More

Fig. 7. Allele-specific Hi-C features. (A) and (B) Hi-C maps of a local region
surrounding the imprinted genes SNRPN and SNURF from the maternal and
paternal Chromosome 15, respectively, through the cell cycle phases G1, S
and G2. The darker the color, the more interactions between two loci. (C)
MCN of the 4-uniform hypergraphs, recovered from Hi-C measurements with
multi-correlation cutoff threshold 0.99, through the cell cycle phases G1, S
and G2. (D) Tensor entropies of the 4-uniform hypergraphs described in (C).

Fig. 8. Computational time comparisons in determining MCN. In the legend,
the letter b stands for the brute-force search, while the letter h stands for the
heuristic approach. Since the computational time using a brute-force search in
determining the MCN of the complete uniform hypergraphs grows very fast,
we only compute them up to sixteen nodes for comparison. For the purpose of
accuracy, we ran each algorithm five times and took the average of the compu-
tational times.
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significantly, it produces exactly the same MCN as a brute-

force search in these simulations.

VI. DISCUSSION

The first four numerical examples reported here highlight

that the tensor-based multilinear system (7) can characterize

the multidimensional interactions in uniform hypergraphs.

The MCN of uniform hyperchains, hyperrings and hyperstars,

and their variants are related to their degree distributions. It is

also a good indicator of uniform hypergraph robustness. How-

ever, more theoretical and numerical investigations are

required to evaluate the controllability of more general uni-

form hypergraphs, and its relation to the hypergraph topology.

Moreover, in practice, hypergraphs like co-authorship net-

works and protein-protein interaction networks are very large,

so computing the reduced controllability matrix and its corre-

sponding MCN is still challenging. Tensor decomposition and

a “maximum matching” type approach need to be considered

in order to facilitate efficient computations [35], [63], [64].

Instead of looking at uniform hypergraphs, can we think of

controllability of more general hypergraphs where each hyper-

edge contains an arbitrary amount of nodes? The main idea is

to make non-uniform hypergraphs uniform, which can then be

represented by tensors. In the following, we adopt the defini-

tion of generalized adjacency tensors of non-uniform hyper-

graphs from [37].

Definition 9 ([37]): Let G = {V, E} be a hypergraph with n
nodes, and k be the maximum cardinality of the hyperedges.

The adjacency tensor A 2 Rn�n�����n of G, which is a k-th
order n-dimensional supersymmetric tensor, is defined as

Aj1j2...jk ¼
s
a
if ði1; i2; . . . ; isÞ 2 E

0; otherwise

8<
: ; (12)

where, jl 2 fi1; i2; . . . ; isg with at least once for each element

of the set for l ¼ 1; 2; . . . ; k, and

a ¼
X

k1þk2þ...þks¼k

k!Qs
l¼1 ki!

:

The choice of the nonzero coefficients s
a
preserves the

degree of each node, i.e., the degree of node j computed using

(6) with weights as defined above is equal to number of hyper-

edges containing the node in the original non-uniform hyper-

graph. When G is uniform, the above definition reduces to

Definition 1. See [37] for examples. Once we have the adja-

cency tensor of a hypergraph, we can discuss the controlla-

bility of the hypergraph when k is even using the techniques

developed in Section III-B. For curiosity, we build several

non-uniform hypergraphs and determine their MCN. The

results are shown in Fig. 9. Intriguingly, the control strategies

for non-uniform hyperchains, hyperrings and hyperstars with

one overlapping nodes between hyperedges are similar to

those discussed in Section V-A. High degree nodes are pre-

ferred to be controlled with each hyperedge containing s� 1

control nodes where s is the cardinality of the hyperedge

(there is one exception in the hyperring configuration).

Furthermore, one may consider weights and directions for

hypergraphs. Weighted hypergraphs can be readily accom-

plished by replacing 1
ðk�1Þ!withWj1j2...jk for some supersymmet-

ric weight tensors W in (5). Banerjee et al. [65] also defined

adjacency tensors for directed hypergraphs, so it will be interest-

ing to establish the controllability of directed hypergraphs.

VII. CONCLUSION

In this paper, we proposed a new notion of controllability for

uniform hypergraphs based on tensor algebra and polynomial

control theory. We represented the dynamics of uniform hyper-

graphs by a tensor product based multilinear system, and derived

a Kalman-rank-like condition to determine the controllability of

even uniform hypergraphs. We established theoretical results on

the MCN of even uniform hyperchains, hyperrings and hyper-

stars as well as complete even uniform hypergraphs. We pro-

posed MCN as a measure of hypergraph robustness, and found

that is it related to the hypergraph degree distribution. We also

presented a heuristic to obtain theMCN efficiently. Additionally,

we applied the notion of MCN to the real world biological net-

works to quantify structural differences, and achieved outstand-

ing performances. Finally, we discussed the controllability of

general hypergraphs. As mentioned in Section VI, a “maximum

matching” type approach is needed in order to find the MCN of

large undirected/directed hypergraphs in a scalable fashion. On

the other hand,more work is required to fully understand the con-

trol properties of the tensor-based multilinear system (7). For

example, it will be useful to realize the potential of tensor algebra

based computations for controllability Gramians and Lyapunov

equations. In addition, it will be worthwhile to develop theoreti-

cal and computational frameworks for observer and feedback

control design, and apply them to the dynamics of hypergraphs.
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Fig. 9. Controllability of non-uniform hypergraphs with MCN. (A) Non-uni-
form hyperchain with e1 ¼ f1; 2g and e2 ¼ f2; 3; 4g. (B) Non-uniform hyperr-
ing with e1 ¼ f1; 2; 3g, e2 ¼ f3; 4g and e3 ¼ f4; 5; 6; 1g. (C) Non-uniform
hyperstar with e1 ¼ f1; 2; 3; 4g, e2 ¼ f4; 5g and e3 ¼ f4; 6; 7g. Nodes with
arrows from the top are the control nodes, and the cyan arrows indicate the
control nodes with the highest degrees in the configurations.
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