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Abstract—In this paper, we develop the notion of entropy
for uniform hypergraphs via tensor theory. We employ the
probability distribution of the generalized singular values,
calculated from the higher-order singular value decomposition of
the Laplacian tensors, to fit into the Shannon entropy formula.
We show that this tensor entropy is an extension of von Neumann
entropy for graphs. In addition, we establish results on the lower
and upper bounds of the entropy and demonstrate that it is a
measure of regularity for uniform hypergraphs in simulated and
experimental data. We exploit the tensor train decomposition in
computing the proposed tensor entropy efficiently. Finally, we
introduce the notion of robustness for uniform hypergraphs.

Index Terms—Uniform hypergraphs, entropy, tensor decom-
positions, pattern recognition, random hypergraphs.

I. INTRODUCTION

MANY real world complex systems can be decomposed

and analyzed using networks. There are two classical

types of complex networks, scale-free networks and small world

networks, which have provided insights in social sciences, cell

biology, neuroscience and computer science [1]–[3]. Recent

advancements in genomics technology, such as genome-wide

chromosome conformation capture (Hi-C), have inspired us to

consider the human genome as a dynamic graph [4], [5]. Study-

ing such dynamic graphs often requires identifying the changes

in network properties, such as degree distribution, path lengths

and clustering coefficients [6]–[8].

Numerous techniques have been developed for anomaly

detection based on evaluating similarities between graphs [9],

[10]. A classic approach for detecting anomalous timestamps

during the evolution of dynamic graphs is comparing two con-

secutive graphs using distance or similarity functions. A com-

prehensive survey on similarity measures can be found in [11].

Two popular measures, Hamming distance [12] and Jaccard

distance [13], are often problem-specific and sensitive to small

perturbations or scaling, thus providing limited understanding

of variations between graphs [14]. Model-agnostic approaches,

such as eigenvalue based/spectral measures, are more flexible

in their representations and interpretations. Therefore, these

approaches can more appropriately quantify the global struc-

tural complexity of graphs [15]–[17].

The von Neumann entropy of a graph, first introduced by

Braunstein et al. [18], is a spectral measure used in structural

pattern recognition. The intuition behind the measure is link-

ing the graph Laplacian to density matrices from quantum

mechanics, and measuring the complexity of the graphs via

the von Neumman entropy of the corresponding density matri-

ces [19]. Additionally, the measure can be viewed as the infor-

mation theoretic Shannon entropy, i.e.,

S ¼ �
X
j

hj ln hj; (1)

where, hj are the normalized eigenvalues of the Laplacian

matrix of a graph such that
P

j hj ¼ 1. Passerini and Sever-

ini [20] observed that the von Neumman entropy of a graph

tends to grow with the number of connected components, the

reduction of long paths and the increase of nontrivial symme-

tricity, and suggested that it can be viewed as a measure of

regularity. They also showed that the entropy (1) is upper

bounded by ln ðn� 1Þ where n is the number of vertices of a

graph.

However, most data representations are multidimensional,

and using graph models to describe them may lose informa-

tion [21]. A hypergraph is a generalization of a graph in which

a hyperedge can join any number of vertices [22], see Fig. 1.

Thus, hypergraphs can represent multidimensional relationship

unambiguously [21]. Examples of hypergraphs include co-

authorship networks, film actor/actress networks and protein-

protein interaction networks [23]. The authors in [21] also men-

tion that hypergraphs require less storage space than graphs

which may accelerate computation. Moreover, a hypergraph

can be represented by a tensor if its hyperedges contain the

same number of vertices (referred to as a uniform hypergraph).

Tensors are multidimensional arrays generalized from vectors

and matrices, preserving multidimensional patterns and captur-

ing higher-order interactions and couplings within multiway

data [24]. Tensor decompositions such as CANDECOMP/

PARAFAC decomposition (CPD), higher-order singular value

decomposition (HOSVD) and tensor train decomposition

(TTD) can facilitate efficient computations and contain contex-

tual interpretations regarding the target data tensors [25]–[28].

Hypergraph entropy has been recently explored by Hu

et al. [29], Bloch et al. [30] and Wang et al. [31]. In [29], Hu
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et al. utilized the probability distribution of the vertex degrees to

fit into the Shannon entropy formula and established its lower

and upper bounds for special hypergraphs. The degree-based

entropy solely depends on the degree distributions of hyper-

graphs, thus failing to capture comprehensive information, such

as path lengths and clustering patterns. Similarly, [30] defined a

hypergraph entropy using incidence matrices, but this formula-

tion may lose higher-order structural information hidden in the

hypergraphs, such as nontrivial symmetricity. Furthermore, [31]

constructed a hypergraph entropy using vertex weighting scores,

calculated from a density estimate technique, to select signifi-

cant lines for model fitting. The score of a vertex (i.e, a fitting

line) relies on residuals measured with the Sampson distance

under some kernel functions from the line to the data points.

Hence, the entropy is difficult to compute and cannot be directly

applied to general forms of hypergraphs.

Based on the works [19], [20], [32], we present a new spectral

measure called tensor entropy, which can decipher topological

attributes of uniform hypergraphs. For example, the hypergraph

in Fig. 1 A with an additional hyperedge e4 ¼ f2; 4; 6g has

a higher tensor entropy than that with e4 ¼ f1; 2; 4g because the
latter destroys the hypergraph symmetrcity with longer average

path length. The key contributions of this paper are as follows:

� We introduce a new notion of entropy for uniform

hypergraphs based on the HOSVD of the corresponding

Laplacian tensors. We establish results on the lower and

upper bounds of the proposed tensor entropy, and pro-

vide a formula for computing the entropy of complete

uniform hypergraphs.

� We adapt a fast and memory efficient TTD-based

computational framework in computing the proposed

tensor entropy for uniform hypergraphs.

� We create two simulated datasets, a hyperedge growth

model and a Watts-Strogatz model for uniform hyper-

graphs. We demonstrate that the proposed tensor entropy

is a measure of regularity relying on the vertex degrees,

path lengths, clustering coefficients and nontrivial symme-

tricity for uniform hypergraphs. Further, we present appli-

cations to three real world examples: a primary school

contact dataset, a mouse neuron endomicroscopy dataset

and a cellular reprogramming dataset. The final example

demonstrates the efficacy of the TTD-based computational

framework in computing the proposed tensor entropy.

� We perform preliminary explorations of tensor eigen-

values in the entropy computation and the notion of

robustness for uniform hypergraphs.

The paper is organized into five sections. We first introduce

the basics of tensor algebra including tensor products, tensor

unfolding, higher-order singular value decomposition and ten-

sor train decomposition in Section II-A. In Section II-B, we dis-

cuss the notion of uniform hypergraphs and extend graph-based

definitions to describe uniform hypergraphs’ structural pro-

perties. We then propose a new form of entropy for uniform

hypergraphs with several theoretical results in Section II-C.

In Section II-D, we exploit the tensor train decomposition to

accelerate the tensor entropy computation. Six numerical

examples are presented in Section III. Finally, we discuss

directions for future research in Section IV and conclude in

Section V. For ease of reading, we provide a notation table in

Appendix A.

II. METHOD

A. Tensor Preliminaries

We take most of the concepts and notations for tensor alge-

bra from the comprehensive works of Kolda et al. [33], [34].

A tensor is a multidimensional array. The order of a tensor is

the number of its dimensions, also known as modes. A k-th
order tensor usually is denoted by X 2 Rn1�n2�����nk . It is

therefore reasonable to consider scalars x 2 R as zero-order

tensors, vectors v 2 Rn as first-order tensors, and matrices

A 2 Rm�n as second-order tensors. For a third-order tensor,

fibers are named as column (X:j2j3), row (Xj1:j3) and tube

(Xj1j2:), while slices are named as horizontal (Xj1::), lateral

(X:j2:) and frontal (X::j3), see Fig. 2. A tensor is called cubical

if every mode is the same size, i.e., X 2 Rn�n�����n. A cubical

tensor X is called supersymmetric if Xj1j2���jk is invariant under
any permutation of the indices, and is called diagonal if

Xj1j2���jk ¼ 0 except j1 ¼ j2 ¼ � � � ¼ jk.
There are several notions of tensor products. The inner

product of two tensors X;Y 2 Rn1�n2�����nk is defined as

hX;Yi ¼
Xn1
j1¼1

� � �
Xnk
jk¼1

Xj1j2...jkYj1j2...jk ; (2)

leading to the tensor Frobenius norm kXk2 ¼ hX;Xi. We say

two tensors X and Y are orthogonal if the inner product

hX;Yi ¼ 0. The matrix tensor multiplication X�p A along

mode p for a matrix A 2 Rm�np is defined by

ðX�p AÞj1j2...jp�1ijpþ1...jk
¼
Xnp
jp¼1

Xj1j2...jp...jkAijp : (3)

This product can be generalized to what is known as the

Tucker product, forAp 2 Rmp�np ,

X�1 A1 �2 A2 �3 � � � �k Ak

¼ X� fA1;A2; . . . ;Akg 2 Rm1�m2�����mk: (4)

Fig. 1. Hypergraphs. (A) A 3-uniform hypergraph with hyperedges e1 ¼
f1; 2; 3g, e2 ¼ f3; 4; 5g, and e3 ¼ f3; 6; 7g. (B) A non-uniform hypergrah
with hyperedges e1 ¼ f1; 2g, e2 ¼ f2; 3; 4; 5g, and e3 ¼ f3; 6; 7g.
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Tensor unfolding is considered as a critical operation in ten-

sor computations [35], [36]. The p-mode unfolding of a tensor

X 2 Rn1�n2�����nk , denoted byXðpÞ, is defined by

Xj1j2...jk ¼ ðXðpÞÞjpj for j ¼ 1þ
Xk
m¼1
m 6¼p

ðjm � 1Þ
Ym�1

i¼1
i6¼p

ni: (5)

The ranks of the p-mode unfoldings are calledmultilinear ranks

of X, which are related to the so-called Higher-Order Singular

Value Decomposition (HOSVD), a multilinear generalization

of the matrix Singular Value Decomposition (SVD) [32], [37].

Theorem 1 (HOSVD): A tensor X 2 Rn1�n2�����nk can be

written as

X ¼ S�1 U1 �2 � � � �k Uk; (6)

where, Up 2 Rnp�np are orthogonal matrices, and S 2
Rn1�n2�����nk is a tensor of which the subtensors Sjp¼a,

obtained by fixing the p-th index to a, have the properties of
1) all-orthogonality: two subtensors Sjp¼a and Sjp¼b are

orthogonal for all possible values of p, a and b subject

to a 6¼ b;

2) ordering: kSjp¼1k � . . . � kSjp¼npk � 0 for all possi-

ble values of p.
The Frobenius norms kSjp¼jk, denoted by g

ðpÞ
j , are the

p-mode singular values of X.
De Lathauwer et al. [32] showed that the p-mode singular

values from the HOSVD of X are the singular values of the

p-mode unfoldings XðpÞ. In Section II-C, we will use the

notion of p-mode singular values as the main tool to define the

tensor entropy for uniform hypergraphs.

The Tensor Train Decomposition (TTD) of an k-th order

tensor X 2 Rn1�n2�����nk is given by

X ¼
XRk

rk¼1

� � �
XR0

r0¼1

Xð1Þ
r0:r1

� Xð2Þ
r1:r2

� � � � � XðkÞ
rk�1:rk

; (7)

where, � is the vector outer product, fR0; R1; . . . ; Rkg is the

set of TT-ranks with R0 ¼ Rk ¼ 1, and XðpÞ 2 RRp�1�np�Rp

are called the core tensors of the TTD. There exist optimal

TT-ranks for the TTD such that

Rp ¼ rank

 
reshape

 
X;
Yp
j¼1

nj;
Yk

j¼pþ1

nj

!!
;

for p ¼ 1; 2; . . . ; k� 1 [38]. A core tensor XðpÞ is called left-

orthonormal if ð �XðpÞÞ> �XðpÞ ¼ I 2 RRp�Rp , and is called

right-orthonormal ifXðpÞðXðpÞÞ> ¼ I 2 RRp�1�Rp�1 where

�XðpÞ ¼ reshapeðXðpÞ; Rp�1np; RpÞ;
XðpÞ ¼ reshapeðXðpÞ; Rp�1; npRpÞ;

are the left- and right-unfoldings of the core tensor, respec-

tively. Here I denotes the identity matrix, and rank and

reshape refer to the rank and reshape operations in MAT-

LAB, respectively. Basic tensor algebra, such as addition, ten-

sor products and norms, can be done in the TT-format without

requiring to recover back to the full tensor representation [38].

B. Uniform Hypergraphs

We first present some fundamental concepts of hyper-

graphs [39]–[41]. A hypergraph G = {V, E} where V ¼
f1; 2; . . . ; ng is the vertex set and E ¼ fe1; e2; . . . ; emg is the

hyperedge set with ep � V for p ¼ 1; 2; . . . ;m. Two vertices

are called adjacent if they are in the same hyperedge. A hyper-

graph is called connected if given two vertices, there is a path

connecting them through hyperedges. If all hyperedges con-

tain the same number of nodes, i.e., jepj ¼ k (j � j denotes the
cardinality of a set), G is called a k-uniform hypergraph, see

Fig. 1 A. Significantly, every k-uniform hypergraph can be

represented by a tensor.

Definition 1: Let G = {V, E} be a k-uniform hypergraph

with n vertices. The adjacency tensor A 2 Rn�n�����n, which is

a k-th order n-dimensional supersymmetric tensor, is defined as

Aj1j2...jk ¼
1

ðk�1Þ! if ðj1; j2; . . . ; jkÞ 2 E

0; otherwise

8<
: (8)

The degree tensor D of a hypergraph G, associated with A,
is a k-th order n-dimensional diagonal tensor with Djj...j equal

to the number of hyperedges that consist of vj for j ¼ 1;
2; . . . ; n. If Djj...j ¼ d for all j, then G is called d-regular.
Given any k vertices, if they are contained in one hyperedge,

then G is called complete.

Definition 2: Let G = {V, E} be a k-uniform hypergraph

with n vertices. The Laplacian tensor L 2 Rn�n�����n of G,

which is a k-th order n-dimensional supersymmetric tensor, is

defined as

L ¼ D� A; (9)

where, D and A are the degree and adjacency tensors of G,

respectively.

The Laplacian tensors of uniform hypergraphs possess

many similar properties as Laplacian matrices. For exam-

ple, the smallest H-eigenvalue of L is always zero corre-

sponding to the all-one H-eigenvector [39]. Moreover,

Fig. 2. Fibers and slices of a third-order tensor. The figure is adapted
from [33].
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Chen et al. [42] showed that the Z-eigenvector associated

with the second smallest Z-eigenvalue of a normalized Lap-

lacian tensor can be used for hypergraph partition. Detailed

descriptions of tensor eigenvalues can be found in Appen-

dix B. In the following, we extend several graph-based defi-

nitions to describe the structural properties of uniform

hypergraphs.

Definition 3: Given a hypergraphG, the index of dispersion

of the vertex degree distribution of G is defined to be the ratio

of its variance to its mean.

Definition 4: Given a k-uniform hypergraph G with n verti-

ces, the average path length of G is defined by

Lavg ¼ 1

nðn� 1Þ
X
j 6¼i

dðvj; viÞ; (10)

where, dðvj; viÞ denotes the shortest distance between vj and
vi.
Definition 5: Given a k-uniform hypergraph G with n verti-

ces, the average clustering coefficient of G is defined by

Cj ¼ jfeilk : vi; vl; vk 2 Nj; eilk 2 Egj
jNjj
k

� � ;

) Cavg ¼ 1

n

Xn
j¼1

Cj;
(11)

where,Nj is the set of vertices that are immediately connected

to vj, and
jNjj
k

� �
¼ jNjj!

ðjNjj�kÞ!k! returns the binomial coefficients.

If jNjj < k, we set Cj ¼ 0.

Definition 6: Given a k-uniform hypergraph G, the small

world coefficient of G is defined by

s ¼ Cavg=Crand

Lavg=Lrand
; (12)

where, Cavg and Lavg are the average clustering coefficient and

path length of G, respectively, and Crand and Lrand are the

same quantities of its equivalent random uniform hypergraph.

The equivalent random uniform hypergraphs of G can be

constructed analogously as Erdo��s-R�enyi graphs [43], i.e., ran-
domly generating uniform hypergraphs that share the same

numbers of vertices and hyperedges with G. All these defini-

tions can be used for quantifying the performance of entropy

measures for uniform hypergraphs.

C. Tensor Entropy

Similar to von Neumann entropy, we exploit the spectrum

of Laplacian tensors to define the notion of tensor entropy for

uniform hypergraphs.

Definition 7: Let G be a k-uniform hypergraph with n ver-

tices. The tensor entropy of G is defined by

S ¼ �
Xn
j¼1

ĝj ln ĝj; (13)

where, ĝj are the normalized k-mode singular values of L such

that
Pn

j¼1 ĝj ¼ 1.
The convention 0 ln 0 ¼ 0 is used if ĝj ¼ 0. The k-mode

singular values of L can be computed from the matrix SVD of

the k-mode unfolding LðkÞ, which results in a O ðnkþ1Þ time

complexity and a O ðnkÞ space complexity, see Algorithm 1.

Since L is supersymmetric, any mode unfolding of L would

yield the same unfolding matrix with the same singular values.

Moreover, the tensor entropy (13) can be viewed as a variation

of von Neumann entropy defined for graphs, in which we

regard cLðkÞL>
ðkÞ as the density matrix for some normalization

constant c [19], [20], [44]. In particular, when k ¼ 2, the ten-

sor entropy is reduced to the classical von Neumann entropy

for graphs. Like the eigenvalues of Laplacian matrices, the

k-mode singular values play a significant role in identifying

the structural patterns for uniform hypergraphs.

Lemma 1: Suppose that G is a k-uniform hypergraph with

k � 3. Then L has a k-mode singular value zero, with multi-

plicity p, if and only if G contains p number of non-connected

vertices.

Proof: The result follows immediately from the definitions

of Laplacian tensor and k-mode unfolding of L. &

The multiplicity of the zero k-mode singular value can be

used to determine the number of connected components of

uniform hypergraphs. Moreover, one can derive the lower

bound of tensor entropy based on Lemma 1.

Proposition 1: Suppose that G is a k-uniform hypergraph

with n vertices and nonempty hyperedge set E for k � 3.
Then the minimum tensor entropy of G is given by

Smin ¼ ln k: (14)

Proof: Since G is a k-uniform hypergraph on n vertices,

the maximum multiplicity of the zero normalized k-mode sin-

gular value of L is n� k according to Lemma 1. In addition,

the other normalized k-mode singular values of are necessarily
1
k. Hence, it is straightforward to show that Smin ¼ ln k: &

Every k-uniform hypergraph can achieve the minimum ten-

sor entropy ln k. As the number of vertices contained in hyper-

edges increases, the lower limit of tensor entropy also

increases. In the following, we present results about the upper

limit of tensor entropy and its relation to regular uniform

hypergraphs.

Proposition 2: Suppose that G is a k-uniform hypergraph

with n vertices for k � 3. Then the maximum tensor entropy

Algorithm 1: Computing Tensor Entropy From SVD.

1: Given a k-uniform hypergraph G with n vertices

2: Construct the adjacency tensor A 2 Rn�n�����n from G and com-

pute the Laplacian tensor L ¼ D� A where D is the degree tensor

3: Find the k-mode unfolding of L, i.e., LðkÞ ¼ reshapeðL; n; nk�1Þ
4: Compute the economy-size matrix SVD of LðkÞ, i.e., LðkÞ ¼ USV>

and let fgjgnj¼1 ¼ diagðSÞ
5: Set ĝj ¼ gjPn

i¼1
gi
and compute S ¼ �Pn

j¼1 ĝj ln ĝj

6: return The tensor entropy S of G.
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of G occurs when it is a 1-regular uniform hypergraph, and is

given by

Smax ¼ lnn: (15)

Proof: Since G is a k-uniform hypergraph on n vertices,

the maximum tensor entropy occurs when the multiplicity of a

normalized k-mode singular value of L is n. Based on the defi-

nitions of Laplacian tensor and k-mode unfolding, for a 1-reg-

ular uniform hypergraph, the number of nonzero elements in

LðkÞ are fixed for j-th row with one entry

ðLðkÞÞj½1þPk�1

m¼1
ðj�1Þnm�1	 ¼ 1

and ðk� 1Þ! entries � 1
2 for j ¼ 1; 2; . . .n. Moreover, since all

the hyperedges contain distinct vertices, the column indices of

the nonzero entries are unique for LðkÞ. Thus, LðkÞL>
ðkÞ is a

diagonal matrix with equal diagonal elements, and the result

follows immediately. &

Proposition 3: Suppose that G is a k-uniform hypergraph

with n vertices for k � 3. If log kn is an integer, then the maxi-

mum tensor entropy of G can be achieved when it is a d-regu-
lar uniform hypergraph for 1 
 d 
 log kn.
Proof: Suppose that log kn is an integer. Any two hyper-

edges of a d-regular uniform hypergraph contain at least k� 1
distinct vertices for 1 
 d 
 log kn. Similar to Proposition 2, it

can be shown thatLðkÞL>
ðkÞ is a diagonal matrix with equal diag-

onal elements. Therefore, the result follows immediately. &

According to Proposition 2 and 3, not all uniform hyper-

graphs with n vertices can achieve the tensor entropy lnn.
However, when log kn is an integer, one can utilize tensor

entropy to measure the regularity of uniform hypergraphs.

Moreover, if G contains p number of non-connected vertices

and log kðn� pÞ is an integer, then Smax ¼ ln ðn� pÞ. There-
fore, larger tensor entropy can be obtained with more con-

nected components in this case. Next, we establish results

regarding complete uniform hypergraphs.

Proposition 4: Suppose that G is a complete k-uniform
hypergraph with n vertices for k � 3. Then the tensor entropy

of G is given by

Sc ¼ ð1� nÞa
ðn� 1Þaþ b

ln
a

ðn� 1Þaþ b

� b

ðn� 1Þaþ b
ln

b

ðn� 1Þaþ b
(16)

where,

a ¼
 
GðnÞðGðn� kþ 1Þ þ GðnÞÞ

GðkÞ2Gðn� kþ 1Þ2 � Gðn� 1Þ
GðkÞ2Gðn� kÞ

!1
2

; (17Þ

b ¼
 
GðnÞðGðn� kþ 1Þ þ GðnÞÞ

GðkÞ2Gðn� kþ 1Þ2 þ ðn� 1ÞGðn� 1Þ
GðkÞ2Gðn� kÞ

!1
2

; (18Þ

and Gð�Þ is the Gamma function.

Proof: Based on the definitions of Laplacian tensor and

k-mode unfolding, the matrix LðkÞL>
ðkÞ 2 Rn�n is given by

LðkÞL>
ðkÞ ¼

d r r � � � r

r d r � � � r

r r d � � � r

..

. ..
. ..

. . .
. ..

.

r r r � � � d

2
666664

3
777775;

where,

d ¼ n� 1

k� 1

� �2

þ n� 1

k� 1

� �
1

ðk� 1Þ! ; and r ¼ Tn�k

ðk� 1Þ!2 :

Here Tm are the k-simplex numbers (e.g., when k ¼ 3, Tm are

the triangular numbers). Moreover, the eigenvalues of LðkÞL>
ðkÞ

are d� r with multiplicity n� 1 and dþ ðn� 1Þr with multi-

plicity 1. Hence, the result follows immediately. We write all

the expressions using the Gamma function for simplicity. &

From Proposition 3 and 4, for arbitrary k-uniform hypergraph

with n vertices and k � 3, Sc could be smaller than the entropies

of other d-regular hypergraphs, and Sc 
 Smax 
 lnn. Further-
more, it can be shown that when n becomes large, Smax � lnn.
Corollary 1: Suppose that G is a complete k-uniform

hypergraph with n vertices for k � 3. Then the tensor entropy

Sc ! lnn as n ! 1:

Proof: As n ! 1,
GðnÞðGðn�kþ1ÞþGðnÞÞ

GðkÞ2Gðn�kþ1Þ2 � Gðn�1Þ
GðkÞ2Gðn�kÞ for fixed

k. Thus, a � b, and the result follows immediately. &

In Section III, we will show evidence that the tensor entropy

(13) is a measure of regularity for general uniform hypergraphs.

Large tensor entropy is characterized by the large number of

connected vertices, high uniformity of vertex degrees, short

path lengths and high level of nontrivial symmetricity. The

entropy is small for uniform hypergraphs with large cliques

and long path lengths, i.e., hypergraphs in which the vertices

form highly connected clusters. Tensor entropy is also related

to the clustering coefficients of uniform hypergraphs in a very

nuanced way.

D. Numerical Method via Tensor Trains

In reality, hypergraphs like co-authorship networks and pro-

tein-protein interaction networks exist in a very large scale,

and computing the tensor entropy using the economy-size

matrix SVD could be computationally expensive. Klus

et al. [45] exploited TTD to efficiently calculate the Moore-

Penrose (MP) inverse of the matrix obtained from any chosen

unfolding of a given tensor. TTD provides a good compromise

between numerical stability and level of compression, and has

an associated algebra that facilitates computations. We thus

adapt the framework of Klus et al. for the computation of the

tensor entropy, see Algorithm 2. In step 2, we assume that the

construction of adjacency and degree tensors in the TT-format

can be achieved due to their simple structures. In step 4, the

left- and right-orthonormalization algorithms can be found

in [45]. The computation and memory complexities of Algo-

rithm 2 are estimated as O ðknr3Þ and O ðknr2Þ, respectively,
where r can be viewed as the “average” rank of the TT-ranks.

Both complexities are much lower than those from Algorithm 1

when r is small.
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III. EXPERIMENTS

All the numerical examples presented were performed on a

Linuxmachine with 8GBRAM and a 2.4 GHz Intel Core i5 pro-

cessor inMATLAB 2018b. The last example (Section III-F) also

used theMATLAB TT-Toolbox by Oseledets et al. [46].

A. Hyperedge Growth Model

We consider the case where the number of vertices is fixed

and new hyperedges are iteratively added to the uniform

hypergraph. Fig. 3 presents the hyperedge growth evolution of

a 3-uniform hypergraph with 7 vertices, and it describes the

tensor entropy maximization and minimization evolutions. In

addition to plotting the two entropy trajectories, we also com-

pute some statistics of the structural properties including aver-

age shortest path length, index of dispersion of the degree

distribution and average clustering coefficient of the hyper-

graphs during the two evolutions, see Fig. 4. If the two vertices

are disconnected, we set the distance between them to be 4 for

the purpose of visualization in Fig. 4 B.

Let’s denote the hypergraphs that achieve maximum (or

minimum) tensor entropy at step j as GðjÞ
max (or G

ðjÞ
min) for

j ¼ 1; 2; . . . ; 35. Similar to maximizing graph entropy, maxi-

mizing the tensor entropy will first connect all the vertices and

then prefer to choose lower degree vertices with larger average

geodesic distances, i.e., finding the geodesic distances

between each pair in the triples and taking the mean, see

Figs. 3 and 4 B. The average geodesic distances may lose

importance if one wants to predict the next step as the

Algorithm 2: Computing Tensor Entropy From TTD.

1: Given a k-uniform hypergraph G with n vertices

2: Construct the adjacency and degree tensors A;D 2 Rn�n�����n in

the TT-format from G
3: Compute the Laplacian tensor L ¼ D� A with core tensors XðpÞ

and TT-ranks fR0; R1; . . . ; Rkg based on the tensor train summa-

tion operation

4: Left-orthonormalize the first k� 2 cores and right-orthonormalize

the last core of L
5: Compute the economy-size matrix SVD of �Xðk�1Þ, i.e., �Xðk�1Þ ¼

USV> for s ¼ rankðSÞ and let fgjgsj¼1 ¼ diagðSÞ
6: Set ĝj ¼ gjPs

i¼1
gi
and compute S ¼ �Ps

j¼1 ĝj ln ĝj

7: return The tensor entropy S of G.

Fig. 3. Tensor entropy maximization/minimization. The top row describes the first five stages of the tensor entropy maximization evolution with a growing
number of hyperedges in the order of e1 ¼ f1; 2; 3g, e2 ¼ f5; 6; 7g, e3 ¼ f3; 4; 5g, e4 ¼ f2; 4; 6g, and e5 ¼ f1; 4; 7g. The bottom row reports the first five stages
of the tensor entropy minimization process with a growing number of hyperedges in the order of e1 ¼ f1; 2; 3g, e2 ¼ f2; 3; 4g, e3 ¼ f1; 2; 4g, e4 ¼ f1; 3; 4g,
and e5 ¼ f3; 4; 5g.

Fig. 4. Hyperedge growth model features. (A), (B), (C), and (D) Trajectories
of tensor entropy, average path length, index of dispersion and average cluster-
ing coefficient with respect to the hyperedge adding steps.
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hypergraph becomes complex. Moreover, the vertices of GðjÞ
max

tend to have “almost equal” or equal degree which leads to a

low index of dispersion, see Fig. 4 C. In particular, GðjÞ
max are

the k
n j-regular hypergraphs for the early stages of the evolu-

tion, i.e., j ¼ 7; 14. However, as the hypergraph becomes

dense, it is possible that GðjÞ
max will miss the regularity, i.e.,

j ¼ 21. Additionally, the average clustering coefficient, in

general, grows with increase of hyperedges, but the average

growth rate for GðjÞ
max is lower than that for G

ðjÞ
min, see Fig. 4 D.

Furthermore, nontrivial symmetricity plays a role in maximiz-

ing the tensor entropy. For example, in Gð3Þ
max, the vertices

f1; 2; 6g and f2; 4; 6g have the same average geodesic distan-

ces (both are equal to 7
3), and the maximized tensor entropy

returns the more symmetric Gð4Þ
max. We also find that candidate

hyperedges that intersect more existing hyperedges would

return higher tensor entropy, which also explains the above

example.

However, there exists one huge disparity between the von

Neumann graph entropy and the tensor entropy. The tensor

entropy can temporarily decrease during the maximizing pro-

cess as seen in Fig. 4 A. We observe that once the maximiza-

tion evolution reaches some regularity or high level of

nontrivial symmetricity, and the next step breaks such regular-

ity or symmetricity, the tensor entropy will decrease. In other

words, for these highly regular or highly symmetric GðjÞ
max, the

corresponding tensor entropies SðjÞmax achieve local maxima.

On the other hand, S
ðjÞ
min, the tensor entropies of G

ðjÞ
min, are

similar to the von Neumann graph entropy. Minimizing the

tensor entropy would result in the formations of complete sub-

hypergraphs (cliques), see Fig. 3. We can detect large jumps

and drops in the next steps after completions of the sub-

hypergraphs in Fig. 4 A and B, respectively. In order to make

the discoveries more convincing, we repeated the same pro-

cesses for k-uniform hypergraphs with different number of

vertices and values of k, and observed similar results.

B. The Watts-Strogatz Model

We perform an experiment on a synthetic random uniform

hypergraph G with n ¼ 100 and k ¼ 4. Similar to the Watts-

Strogatz graph, the initial hypergraph is 2-regular with lattice

structure. Let q be the number of hyperedges added to the

hypergraph in order to form cliques in every five vertices, and p
be the rewiring probability of hyperedges, see Fig. 5. Then

GðqÞðpÞ denotes the random uniform hypergraphs generated by

the rewiring probability p for different q. Particularly, when
q ¼ 3, the tensor entropy Sð3Þð0Þ ¼ 4:5527, the average cluster-
ing coefficient C

ð3Þ
avgð0Þ ¼ 0:7571 and the average path length

L
ð3Þ
avgð0Þ ¼ 7:0606. The goal of the experiment is to explore the

relations between the tensor entropy, the average clustering

coefficient and path length with increasing the hyperedge

rewiring probability p for different q. We also calculate the

small world coefficient for the random hypergraphs, denoted

by sðqÞðpÞ. For each GðqÞðpÞ, we compute its tensor entropy,

Fig. 5. Initial hypergraphs’ structures for different qq. The plot describes the cliques’ formation in the first five vertices of the uniform hypergraph with the rewir-
ing probability zero, in which e1 ¼ f1; 2; 3; 4g, e2 ¼ f2; 3; 4; 5g, e3 ¼ f1; 2; 4; 5g, e4 ¼ f1; 3; 4; 5g, and e5 ¼ f1; 2; 3; 5g. The rest have the same patterns in
every five vertices for a corresponding q.

Fig. 6. The Watts-Strogatz model features. (A) Tensor entropies of random
uniform hypergraphs with different rewiring probabilities for different q. (B)
Normalized small world coefficients of random uniform hypergraphs with dif-

ferent rewiring probabilities for different q. (C) Ratios C
ð3Þ
avgðpÞ=Cð3Þ

avgð0Þ and

L
ð3Þ
avgðpÞ=Lð3Þ

avgð0Þ of random uniform hypergraphs with different rewiring prob-
abilities for q ¼ 3. (D) Scatter plot between the tensor entropy and the two
ratios from (C).
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average clustering coefficient, average path length and small

world coefficient 10 times and take the means for q ¼ 2; 3.
The results are shown in Fig. 6. In general, with increasing

rewiring probability p, the tensor entropy decays for both

q ¼ 2 and 3, see Fig. 6 A. Initially, the tensor entropies for

q ¼ 2 are higher than those for q ¼ 3, which implies that lower

average clustering coefficient yields larger tensor entropy at

the same probability (
0.50 and 
0.73, respectively). How-

ever, we see a strictly positive correlation between the tensor

entropy and the average clustering coefficient as p increases,

see Fig. 6 D. After p ¼ 0:1, the tensor entropies for q ¼ 2
decays faster than that for q ¼ 3, indicating that higher average
path length returns lower tensor entropy (
2.75 and 
2.66,

respectively). Moreover, the curves of the small world coeffi-

cient in Fig. 6 B are very similar to the one in the Watts-Stro-

gatz graph, in which it grows gradually for p < 0:1 and

decreases quickly after p > 0:1. When the rewiring probability

p is between 0.03 and 0.1, Gð3ÞðpÞ have apparent small world

characteristics, e.g., C
ð3Þ
avgð0:07Þ ¼ 0:5488 and L

ð3Þ
avgð0:07Þ ¼

3:5748, over the 100 vertices. In addition, we find that the aver-
age clustering coefficient pattern is similar to tensor entropy.

On the contrary, the average path length has a different trend. It

decreases faster at small p and more slowly than the average

clustering coefficient at large p, see Fig. 6 C.

C. Primary School Contact

The primary school contact dataset contains the temporal

network of face-to-face contacts amongst the children and

teachers (242 people in total) at a primary school, in which an

active contact can include more than two people [47], [48]. In

this study, we consider the cases of two-person contacts (i.e.,

a normal graph) and three-person contacts (i.e., a 3-uniform

hypergraph) per hour, and explore the relations of tensor

entropy with contact frequencies and number of people

involved over one school day. The results are shown in Fig. 7,

in which the two entropies have a similar and reasonable pat-

tern. Both two-person and three-person contacts are more

active at the second and eighth hours, and are less active at the

fifth hour. Like the von Neumann entropy (k ¼ 2), the tensor

entropy (k ¼ 3) is expected to grow with increased number of

connected vertices, see Fig. 7 B and C, which implies that

more children and teachers involved will yield larger tensor

entropies. On the other hand, the entropy also heavily relies

on the complexity and regularity of the uniform hypergraphs

as demonstrated before. For instance, the number of people

involved at the seventh hour is greater than that at the fifth

hour for k ¼ 3, but the tensor entropies are opposite because

more contacts are made at the fifth hour, increasing the com-

plexity or regularity in the uniform hypergraph, see Fig. 7 A.

D. Mouse Neuron Endomicroscopy

The goal of the experiment is to observe mouse neuron acti-

vation patterns using fluorescence across space and time before

and after food treatment in the mouse hypothalamus. Large

changes in fluorescence are inferred to be active neurons that

are “firing.” The mouse endomicroscopy dataset is an imaging

video created under the 10-minute periods of feeding, fasting

and re-feeding. The imaging region contains in total 20 neuron

cells, and the levels of “firing” are also recorded for each

neuron. In this study, we build k-uniform hypergraphs for each

10-minute interval based on the correlations/multi-correlations

of the neuron “firing” level for k ¼ 2; 3. The multi-correlation

among three variables is defined by

r2 ¼ c21 þ c22 þ c23 � 2c1c2c3; (19)

where, c1, c2 and c3 are the correlations between the three vari-
ables [49]. It turns out that the multi-correlation is a generali-

zation of Pearson correlation which can measure the strength

of multivariate correlation.

The results are shown in Fig. 8, in which (A), (B) and (C) are

the first eigenfaces of the corresponding three phases showing

the dominant features in these phases. For computing the

entropy, we choose the cutoff threshold to be 0.93 in the con-

struction of edge/hyperedge. In Fig. 8 D, the von Neumann

entropy (k ¼ 2) stays constant because the threshold is too high

to generate edges in the graph model. However, the tensor

entropy (k ¼ 3) is able to capture changes in neuronal activity,

which is lower during the fast phase and higher during the fed/

re-fed phase. If we lower the threshold, a similar pattern is

observed for k ¼ 2. To maintain the model accuracy, we want to

Fig. 7. Primary school contact features. (A) Number of the two-person and three-person contacts amongst the children and teachers every one hour of a day. (B)
Number of children and teachers involved every one hour of a day in the two-person and three-person contacts, respectively. (C) Trajectories of the von Neu-
mann entropy and the tensor entropy for the two-person and three-person contacts of a day.
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keep the threshold as high as possible. This supports use of ten-

sor entropy over von Neumann entropy. As validation for using

tensor entropy in biological data, we find that mouse neuron acti-

vation patterns can be more accurately captured through 3-uni-

form hypergraphs. Under the threshold 0.93, the two

hypergraphs for the fed and re-fed phases contain a number of

common hyperedges. These hyperedges are mainly composed of

vertices with high degrees, representing scenarios where more

than two neurons synchronize, or “co-fire,” in the mouse hypo-

thalamus. This suggests that these neurons are involved in mouse

appetite regulation, which is not captured using the graph model.

E. Cellular Reprogramming

Cellular reprogramming is a process that introduces proteins

called transcription factors as a control mechanism for trans-

forming one cell type into another. The unbiased genome-wide

technology of chromosome conformation capture (Hi-C) has

been used to capture the dynamics of reprogramming [4], [5],

[51]. However, the pairwise contacts from Hi-C data fail to

include the multiway interactions of chromatin. Furthermore,

the notion of transcription factories supports the existence of

simultaneous interactions involving mutiple genomic loci [50],

implying that the human genome configuration can be repre-

sented by a hypergraph. Therefore, in this example, we use 3-

uniform hypergraphs to partially recover the 3D configuration of

the genome based on the multi-correlation (19) fromHi-Cmatri-

ces.We believe that such reconstruction can provide more infor-

mation about genome structure and patterns, compared to the

pairwise Hi-C contacts. We use a cellular reprogramming data-

set, containing normalized Hi-C data from fibroblast

proliferation and MyoD-mediated fibroblast reprogramming

(MyoD is the transcription factor used for control) for Chromo-

some 14 at 1 MB resolution with a total of 89 genomic loci. Our

goal is to quantitatively detect a bifurcation in the fibroblast pro-

liferation and reprogramming data, and accurately identify the

critical transition point between cell identities during reprogram-

ming. The results are shown in Fig. 9. We can clearly observe a

bifurcation between the two trajectories using the tensor entropy

of the 3-uniform hypergraphs recovered from the Hi-C measure-

ments. Crucially, the critical transition point marked in Fig. 9 A

is consistent with the ground-truth statistic provided in [51]. In

contrast, the von Neumann entropy cannot provide adequate

information about the bifurcation and critical transition point, if

one analyzes the Hi-Cmeasurements as adjacency matrices. The

two trajectories are separate from the beginning, see Fig. 9 B.

F. Algorithm Run Time Comparison

In this example, the k-uniform hypergraphs are constructed

with n vertices by forming a strip structure in which every

Fig. 10. Computational time comparisons between the SVD-based and TTD-
based algorithms. For the TTD-based entropy computation, we reported the
times of left- and right-orthonormalization and economy-size matrix SVD.
For the SVD-based entropy computation, we only reported the time of econ-
omy-size matrix SVD. For the purpose of accuracy, we ran each algorithm 10
times and took the average of the computational times.

Fig. 8. Mouse neuron endomicroscopy features. (A), (B), and (C) First
eigenfaces of the three phases - fed, fast and re-fed. (D) Tensor entropies of
the k-uniform hypergraphs constructed from the corresponding three phases
with k ¼ 2; 3 (here w.t. stands for “with threshold”).

Fig. 9. Cellular reprogramming features. (A) Tensor entropies of the uniform
hypergraphs recovered from Hi-C measurements with multi-correlation cutoff
threshold 0.95. (B) Von Neuman entropies of the binarized Hi-C matrices
with weight cutoff threshold 0.95.

CHEN AND RAJAPAKSE: TENSOR ENTROPY FOR UNIFORM HYPERGRAPHS 2897

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 30,2020 at 23:39:55 UTC from IEEE Xplore.  Restrictions apply. 



pair of connected hyperedges only contains one common ver-

tex. We compare the computational efficiency of the SVD-

based Algorithm 1 and the TTD-based Algorithm 2 in com-

puting the tensor entropy. The results are shown in Fig. 10.

For the TTD-based entropy computations, we assume that

all the adjacency and degree tensors of the uniform hyper-

graphs are already provided in the TT-format. Evidently,

Algorithm 2 is more time efficient than Algorithm 1 for 4-

uniform and 5-uniform hypergraphs with the strip structure

as n becomes larger, see Fig. 10. Particularly, when k ¼ 5,
the TTD-based algorithm exhibits a huge time advantage as

predicted in the computation complexity. The time curve

from the SVD-based Algorithm 1 increases exponentially,

while it grows at a much slower rate if using Algorithm 2.

In the meantime, we compute the relative errors between

the tensor entropies computed from the two algorithms, all

of which are within 10�14.

IV. DISCUSSION

The first five numerical examples reported here highlight that

the k-mode singular values computed from the HOSVD of the

Laplacian tensors can provide nice predictions of structural

properties for uniform hypergraphs. This method can also be

used for anomaly detection in the context of dynamics as we

demonstrated in the mouse neuron endomicroscopy and cellular

reprogramming datasets. However, more theoretical and numer-

ical investigations are required to assess the real advantages of

hypergraphs versus normal graphs, and is an important avenue

of future research. Moreover, as we pointed out in Section II-D,

many simple structure tensors can be directly created in the TT-

format without requiring construction of the full representations.

For example, Oseledets et al. [46] built the Laplacian operator in

the TT-format for the discretized heat equations. We believe

that similar results can happen to the adjacency, degree and Lap-

lacian tensors for uniform hypergraphs.

Instead of looking at the k-mode singular values, we can con-

sider the tensor eigenvalues in defining the tensor entropy. We

will refer to it as the eigenvalue entropy later. See Appendix B

for a short introduction to tensor eigenvalues for supersymmet-

ric tensors. Based on the tensor eigenvalue formulations, we

can establish the eigenvalue entropy measure for uniform

hypergraphs.

Definition 8: Let G be a k-uniform hypergraph with n ver-

tices. The eigenvalue entropy of G is defined by

S ¼ �
Xd
j¼1

j�̂jj ln j�̂jj; (20)

where, j�̂jj are the normalized modulus of the eigenvalues of

the Laplacian tensor L such that
Pd

j¼1 j�̂jj ¼ 1, and d ¼ nðk�
1Þn�1

is the total number of the eigenvalues.

The convention 0 ln 0 ¼ 0 is used if j�̂jj ¼ 0. We can use

other tensor eigenvalue notions including H-eigenvalue, E-

eigenvalue and Z-eigenvalue with a corresponding d to fit into

the formula. For curiosity, we repeat the hyperedge growth

model using the eigenvalue entropy, see Fig. 11. The entropy

minimization evolution trajectory is the same for the first five

stages in which cliques are formed. The maximization evolu-

tion trajectory becomes different from the fourth stage after the

hypergraph is connected, in which short path lengths and high

level of nontrivial symmetricity are no longer the factors that

maximize the entropy. In addition, computing the eigenvalues

Fig. 11. Eigenvalue entropy maximization/minimization. The top row describes the first five stages of the eigenvalue entropy maximization evolution with a
growing number of hyperedges in the order of e1 ¼ f1; 2; 3g, e2 ¼ f5; 6; 7g, e3 ¼ f3; 4; 5g, e4 ¼ f1; 2; 7g, and e5 ¼ f3; 4; 6g. The eigenvalue entropy SðjÞmax =
4.4910, 5.6342, 5.8608, 5.9490, and 6.0091 for j ¼ 1; 2; 3; 4; 5. The bottom row reports the first five stages of the eigenvalue entropy minimization process with
a growing number of hyperedges in the order of e1 ¼ f1; 2; 3g, e2 ¼ f2; 3; 4g, e3 ¼ f1; 2; 4g, e4 ¼ f1; 3; 4g, and e5 ¼ f3; 4; 5g. The eigenvalue entropy S

ðjÞ
min =

4.4910, 5.3604, 5.4434, 5.4715, and 5.6334 for j ¼ 1; 2; 3; 4; 5. All the tensor eigenvalues of the Laplacian tensors in this experiment are computed from the
MATLAB Toolbox TenEig [52], [53].
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of a tensor is an NP-hard problem [54]. Hence, the eigenvalue

entropy may not be used to predict the structural properties for

uniform hypergraphs, but it might contain other unknown fea-

tures that are required to explore in the future.

Furthermore, the notion of robustness for uniform hyper-

graphs is an important topic. In graph theory, one of the popu-

lar measures is called effective resistance [55]. The authors

in [56] show that the effective graph resistance can be written

in terms of the reciprocals of graph Laplacian eigenvalues,

and robust networks have small effective graph resistance.

Hence, we attempt to establish similar relationship using the

k-mode singular values from the Laplacian tensors to describe

the robustness of uniform hypergraphs.

Definition 9: Let G be a connected k-uniform hypergraph

with n vertices. The effective resistance of G is defined by

R ¼ n
Xn
j¼1

1

gj

; (21)

where, gj are the k-mode singular values of L.
If a uniform hypergraph is non-connected, then the effective

resistance R ¼ 1. Based on (21), we compute the effective

resistance of the uniform hypergraphs GðjÞ
max in the hyperedge

growth model example, denoted by RðjÞ
max. Similar to the effec-

tive graph resistance, RðjÞ
max strictly decreases when hyperedges

are added and achieves the minimum at the final step when

the hypergraph is complete, see Table I. We can also expect

that the smaller the effective resistance is, the more robust the

uniform hypergraph. We believe that the effective resistance

(21) is a good measure for uniform hypergraph robustness, but

more theoretical and numerical support is needed to verify

this hypothesis.

V. CONCLUSION

In this paper, we proposed a new notion of entropy for uni-

form hypergraphs based on the tensor higher-order singular

value decomposition. The k-mode singular values of Lapla-

cian tensors provide nice interpretations regarding the struc-

tural properties of uniform hypergraphs. The tensor entropy

heavily depends on the vertex degrees, path lengths, clustering

coefficients and nontrivial symmetricity. We investigated the

lower and upper bounds of the entropy and provided the

entropy formula for complete uniform hypergraphs. A TTD-

based computational framework was proposed for computing

the tensor entropy efficiently. We also applied this spectral

measure to real biological networks for anomaly detection, and

achieved better performances compared to the von Neumann

graph entropy. As discussed in Section IV, the detailed rela-

tions between tensor eigenvalues and entropy, and the theore-

tical investigations of hypergraph robustness require further

exploration. Controllability and influenceability of uniform

hypergraphs are also important for future research.
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