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Explicit Solutions and Stability Properties of Homogeneous
Polynomial Dynamical Systems

Can Chen

Abstract—In this article, we provide a system-theoretic treat-
ment of certain continuous-time homogeneous polynomial dynam-
ical systems (HPDS) via tensor algebra. In particular, if a system
of homogeneous polynomial differential equations can be repre-
sented by an orthogonally decomposable (odeco) tensor, we can
construct its explicit solution by exploiting tensor Z-eigenvalues
and Z-eigenvectors. We refer to such HPDS as odeco HPDS. By
utilizing the form of the explicit solution, we are able to discuss
the stability properties of an odeco HPDS. We illustrate that the
Z-eigenvalues of the corresponding dynamic tensor can be used
to establish necessary and sufficient stability conditions, similar to
these from linear systems theory. In addition, we are able to obtain
the complete solution to an odeco HPDS with constant control. Fi-
nally, we establish results that enable one to determine if a general
HPDS can be transformed to or approximated by an odeco HPDS,
where the previous results can be applied. We demonstrate our
framework with simulated and real-world examples.

Index Terms—Explicit solutions, homogeneous polynomial dy-
namical systems (HPDS), orthogonal decomposition, stability, ten-
sor algebra, Z-eigenvalues, Z-eigenvectors.

I. INTRODUCTION

Many real-world models, such as those arising in biology, chemistry,
and engineering, can be captured by homogeneous polynomial dynam-
ical systems (HPDS) [1], [2], [3], [4]. For example, Chen et al. [1]
utilized HPDS to model higher order interactions in mouse neuronal
networks, which offers a unique insight in understanding the function-
ality of mouse brains. In addition, Bairey et al. [2] used a polynomial
dynamics model to simulate communities with interactions of different
orders in ecological systems and analyzed the impacts of higher order
interactions on critical community size. Under certain conditions, the
polynomial dynamics model can be simplified to HPDS. Investigating
the stability properties of such higher order networks is extremely
significant in order to maintain and control the networks. Nevertheless,
the stability of HPDS is one of the most challenging problems in systems
theory due to its nature of nonlinearity. The most common strategy is
still the local stability analysis when dealing with HPDS.

Manuscript received 9 May 2022; accepted 17 September 2022. Date
of publication 26 September 2022; date of current version 28 July 2023.
This work was supported by the Mathematics Department Graduate
Fellowship from the University of Michigan. Recommended by Associate
Editor M. Kanat Camlibel. (Corresponding author: Can Chen.)

The author is with the Department of Mathematics, University of Michi-
gan, Ann Arbor, MI 48109 USA, and also with the Channing Division of
Network Medicine, Brigham and Women’s Hospital and Harvard Medical
School, Boston, MA 02115 USA (e-mail: canc@umich.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3209438.

Digital Object Identifier 10.1109/TAC.2022.3209438

Numerous efforts have been made in exploring the stability proper-
ties of HPDS [5], [6], [7], [8]. In 1983, Samardzija [5] established a
necessary and sufficient condition for asymptotic stability in 2-D HPDS
by formulating a generalized characteristic value problem. Moreover,
Ali and Khadir [6] discovered that the existence of a rational Lyapunov
function (i.e., the ratio of two polynomials) is necessary and sufficient
for asymptotic stability of an HPDS. More importantly, they proved
that the Lyapunov inequalities on both the rational function and its
derivative have sum of squares certificates, so a Lyapunov function
can always be found by semidefinite programming. The semidefinite
programming problem depends on the two-degree parameters, which
gives rise to a hierarchy of semidefinite programs where one has to
try all possible combinations of the parameters in order to obtain a
Lyapunov function. Recently, tensor algebra has been applied to model
and simulate nonlinear dynamics [1], [9], [10], [11], [12]. Notably,
every HPDS can be represented by a dynamic tensor, analogous to
dynamic matrices of linear systems. Thus, tensor algebra, such as
tensor eigenvalues and tensor decompositions, could be promising in
determining the explicit solution and the stability properties of an
HPDS.

There are many definitions of tensor decompositions [13], [14],
[15]. Of particular interest in this article is tensor orthogonal decom-
position. Generalized from matrix eigenvalue decomposition, tensor
orthogonal decomposition aims to decompose a supersymmetric tensor
(i.e., invariant under any permutations of the indices) into a sum
of rank-one tensors in the form of outer products of vectors, which
form an orthonormal basis, see Fig. 1(b). Each rank-one tensor is
also multiplied with a real coefficient. It has been shown that the
coefficients and the vectors in the orthogonal decomposition are the
Z-eigenvalues and the Z-eigenvectors of the tensor, respectively [15].
If a supersymmetric tensor has an orthogonal decomposition, it is
called orthogonally decomposable (odeco). Odeco tensors enjoy the
nice orthonormal property, which can be applied to various tensor-based
applications. For instance, Anandkumar et al. [16] exploited odeco
tensors to estimate parameters in the method of moments from statistics.
Thus, we are intrigued by exploring the system properties of HPDS that
can be represented by odeco tensors. We refer to such HPDS as odeco
HPDS. Although the class of odeco HPDS is restricted, a certain amount
of population dynamics with pairwise/higher order interactions, such
as those arising in neuronal networks, chemical reaction networks, and
ecological networks, can be modeled by odeco HPDS. Most crucially,
the results of odeco HPDS could be a powerful foundation for extension
to general HPDS, e.g., transforming/approximating the dynamic tensor
of a general HPDS to/by an odeco tensor.

In fact, Chen [9] investigated the explicit solutions and the stability
properties of discrete-time odeco HPDS (also called multilinear dynam-
ical systems in [9]). Chen [9] showed that the Z-eigenvalues from the
orthogonal decomposition of a dynamic tensor play a significant role
in the stability analysis, offering necessary and sufficient conditions.
In this article, we will focus on continuous-time HPDS. The key
contributions of this article are as follows.
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Fig. 1. Tensor decompositions. (a) CP decomposition of a third-order
tensor. (b) Orthogonal decomposition of a third-order 3-D supersymmet-
ric tensor. This figure is adapted from [14].

1) We investigate the explicit solution of an odeco HPDS. We derive
an explicit solution formula by using the Z-eigenvalues and the
Z-eigenvectors from the orthogonal decomposition of the corre-
sponding dynamic tensor.

2) According to the formula of the explicit solution, we are able
to discuss the stability properties of an odeco HPDS. We show
that the Z-eigenvalues from the orthogonal decomposition can
offer necessary and sufficient stability conditions. Furthermore, we
apply an upper bound of the largest Z-eigenvalue to determine the
asymptotic stability efficiently.

3) We explore the complete solution of an odeco HPDS with constant
control. We find that the complete solution can be solved implicitly
by exploiting Gauss hypergeometric functions.

4) We establish results that enable one to determine if a general HPDS
can be transformed to or approximated by an odeco HPDS, in which
all the previous results can be applied.

This article is organized into seven sections. In Section II, we
review tensor preliminaries, including tensor vector multiplications,
tensor eigenvalues, and orthogonal decomposition. We derive an ex-
plicit solution formula for an odeco HPDS and discuss the stabil-
ity properties of the HPDS based on the form of the explicit so-
lution in Section III. In Section IV, we explore the complete so-
lution of an odeco HPDS with constant control. We provide crite-
ria to determine if a general HPDS can be transformed to or ap-
proximated by an odeco HPDS with detailed algorithmic procedures
in Section V. Simulated and real-world examples are presented in
Section VI. Finally, we conclude in Section VII with future research
directions.

II. TENSOR PRELIMINARIES

A tensor is a multidimensional array [13], [14], [17]. The order of a
tensor is the number of its dimensions, and each dimension is called a
mode. A kth-order tensor is usually denoted by T ∈ R

n1×n2×···×nk .
It is therefore reasonable to consider scalars x ∈ R as zero-order
tensors, vectors v ∈ R

n as first-order tensors, and matrices M ∈
R
m×n as second-order tensors. A tensor is called cubical if every

mode is the same size, i.e., T ∈ R
n×n×···×n. A cubical tensor T is

called supersymmetric if Tj1j2...jk is invariant under any permuta-
tion of the indices. For instance, a third-order tensor T ∈ R

n×n×n is
supersymmetric if

Tj1j2j3 = Tj1j3j2 = Tj2j1j3 = Tj2j3j1 = Tj3j1j2 = Tj3j2j1

for all j1, j2, j3 = 1, 2, . . . , n.

A. Tensor Vector Multiplication

The tensor vector multiplication T ×p v along mode p for a vector
v ∈ R

np is defined as

(T ×p v)j1j2...jp−1jp+1...jk =

np∑
jp=1

Tj1j2...jp...jkvjp (1)

which can be extended to

T ×1 v1 ×2 v2 ×3 · · · ×k vk = Tv1v2 . . .vk ∈ R (2)

for vp ∈ R
np . If T is supersymmetric and vp = v for all p, the product

(2) is also known as the homogeneous polynomial associated with T
[15], [18], and we write it as Tvk for simplicity. In other words, an
n-D homogeneous polynomial of degree k can be uniquely determined
by a kth-order n-D supersymmetric tensor, analogous to quadratic
forms (i.e., v�Mv) in matrix theory. As an illustrative example, the
2-D homogeneous polynomial of degree three, i.e., f(x, y) = ax3 +
bx2y + cxy2 + dy3, can be represented by a supersymmetric tensor
T ∈ R

2×2×2 with entries T111 = a, T112 = T121 = T211 = b
3

, T122 =
T212 = T221 = c

3
, and T222 = d. Therefore, the product Tvk−1 ∈ R

n

belongs to the family of homogeneous polynomial systems (though it
does not include the entire space for supersymmetric T, see Proposition
5).

B. Tensor Eigenvalues

The tensor eigenvalues of real supersymmetric tensors were first
explored by Qi [18], [19] and Lim [20] independently. There are many
notions of tensor eigenvalues including H-eigenvalues, Z-eigenvalues,
M-eigenvalues, and U-eigenvalues [13], [18], [19]. Of particular interest
of this article are Z-eigenvalues (which are associated with tensor
orthogonal decomposition). Given a kth-order supersymmetric ten-
sor T ∈ R

n×n×···×n, the E-eigenvalues λ ∈ C and the E-eigenvectors
v ∈ C

n of T are defined as{
Tvk−1 = λv

v�v = 1.
(3)

The E-eigenvalues λ could be complex. If λ are real, we call them
Z-eigenvalues. It has been proved that a supersymmetric tensor always
has Z-eigenvalues [19]. Similar to matrix eigenvalues, the largest and
smallest Z-eigenvalues of a supersymmetric tensor can be solved by

max
v∈Rn

{Tvk : ‖v‖2 = 1} and min
v∈Rn

{Tvk : ‖v‖2 = 1}

respectively. Since the objective function is continuous and the fea-
sible set is compact, the global maximizer and minimizer always
exist. When k = 2, the abovementioned optimization yields the matrix
eigenvalue problem. Computing the E-eigenvalues or the Z-eigenvalues
of a tensor is NP-hard [21]. However, many numerical algorithms,
such as homotopy continuation approaches [22] and adaptive shifted
power methods [23], are proposed in order to best approximate the
E-eigenvalues or the Z-eigenvalues of a tensor.

C. Tensor Orthogonal Decomposition

Before talking about tensor orthogonal decomposition, we first intro-
duce CANDECOMP/PARAFAC (CP) decomposition. Like rank-one
matrices, a tensor T ∈ R

n1×n2×···×nk is rank-one if it can be written as
the outer product of k vectors, i.e., T = v(1) ◦ v(2) ◦ · · · ◦ v(k) (where
“◦” denotes the vector outer product). CP decomposition decomposes a
tensor T ∈ R

n1×n2×···×nk into a sum of rank-one tensors, see Fig. 1(a).
It is often useful to normalize all the vectors and have weights λr in
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descending order in front

T =
R∑
r=1

λrv
(1)
r ◦ v(2)

r ◦ · · · ◦ v(k)
r (4)

where v
(p)
r ∈ R

np have unit length, and R is called the CP rank of T
if it is the minimum integer that achieves (4). Every tensor has a CP
decomposition, and it is unique up to scaling and permutation under a
weak condition, see details in [14]. The best CP rank approximation is
ill-posed, but carefully truncating the CP rank will yield a good estimate
of the original tensor [13].

Tensor orthogonal decomposition is a special case of CP decom-
position. A kth-order supersymmetric tensor T ∈ R

n×n×···×n is called
orthogonally decomposable (odeco) if it can be written as a sum of
vector outer products

T =

n∑
r=1

λrvr ◦ vr◦ k· · · ◦vr (5)

where λr ∈ R in the descending order, and vr ∈ R
n are orthonor-

mal [15], see Fig. 1(b). It is easy to prove that λr are the Z-eigenvalues
of T with the corresponding Z-eigenvectors vr . Although λr do not
include all the Z-eigenvalues of T, it has been shown that the Z-spectral
radius of T (i.e., the maximum absolute Z-eigenvalues) is equal to
max {|λ1|, |λn|} [24]. In addition, not all supersymmetric tensors have
orthogonal decomposition. Reobeva [15] speculated that odeco tensors
satisfy a set of polynomial equations that vanish on the odeco variety,
which is the Zariski closure of the set of odeco tensors inside the
space of kth-order n-D complex supersymmetric tensors. Although
Reobeva [15] only proved for the case when n = 2, she provided
strong evidence for its overall correctness. Furthermore, a tensor power
method was proposed in [15] in order to obtain the orthogonal decom-
position of an odeco tensor.

III. MAIN RESULTS

In this article, we are interested in finding the explicit solution to a
continuous-time HPDS of degree k − 1, which can be represented by

ẋ(t) = A ×1 x(t)×2 x(t)×3 · · · ×k−1 x(t) = Ax(t)k−1 (6)

where A ∈ R
n×n×···×n is a kth-order n-D odeco tensor, and x(t) ∈

R
n is the state variable. We refer to such HPDS as odeco HPDS, see

Section VI for examples.

A. Explicit Solutions

We find that the explicit solution to the odeco HPDS (6) can be
solved in a simple fashion by exploiting the Z-eigenvalues and the
Z-eigenvectors from the orthogonal decomposition of A.

Proposition 1: Suppose that k ≥ 3 and A ∈ R
n×n×···×n is odeco. Let

the initial condition x0 =
∑n
r=1 αrvr . Then, the explicit solution to

the odeco HPDS (6), given the initial condition x0, is given by

x(t) =
n∑
r=1

(
1− (k − 2)λrα

k−2
r t

)− 1
k−2 αrvr (7)

where λr are the Z-eigenvalues with the corresponding Z-eigenvectors
vr from the orthogonal decomposition of A. Moreover, if λrαk−2

r > 0
for some r, the solution (7) is only defined over the interval

t ∈
[
0,min

S

1

(k − 2)λrαk−2
r

)
(8)

where S = {r = 1, 2, . . . , n|λrαk−2
r > 0}.

Proof: Since vr are orthonormal, we can suppose that

x(t) =
n∑
r=1

cr(t)vr = Vc(t)

where

V =
[
v1 v2 . . . vn

]

c(t) =
[
c1(t) c2(t) . . . cn(t)

]�
.

Clearly, cr(0) = αr for all r. Based on the property of tensor vector
multiplications, it can be shown that

ẋ(t) =

(
n∑
r=1

λrvr ◦ vr ◦ · · · ◦ vr
)

×1 x(t)×2 · · · ×k−1 x(t)

=

(
n∑
r=1

λrvr ◦ vr ◦ · · · ◦ vr
)

×1

(
n∑
i=1

ci(t)vi

)
×2 . . .

×k−1

(
n∑
i=1

ci(t)vi

)
=

n∑
r=1

λr

〈
vr,

n∑
i=1

ci(t)vi

〉k−1

vr

=

n∑
r=1

λrcr(t)
k−1vr.

Thus, we have

ċ(t) = λ ∗ c(t)[k−1] ⇒ ċr(t) = λrcr(t)
k−1

where λ =
[
λ1 λ2 . . . λn

]�
, “ ∗ ” denotes the elementwise

multiplication, and the superscript “[k − 1]” denotes the element-wise
(k − 1)th power. By the method of separation of variables, we can solve
for cr(t), which are given by∫

cr(t)
−(k−1)dcr(t) =

∫
λrdt

⇒ cr(t) = ((k − 2)(wr − λrt))
− 1

k−2 .

Thus, plugging the initial condition yields

cr(t) =
(
1− (k − 2)λrα

k−2
r t

)− 1
k−2 αr

and the result follows immediately. Moreover, if λrαk−2
r > 0 for some

r, the corresponding coefficient functions cr(t) will have singularities
at t = 1

(k−2)λrα
k−2
r

. Thus, the domains of cr(t) are given by t ∈[
0, 1

(k−2)λrαk−2
r

)
. The other branches of cr(t) over t ∈

(
1

(k−2)λrαk−2
r

,∞
)

do not satisfy the initial conditions, so they are not included in the
solutions of cr(t). Therefore, the overall domain of the solution (7) is
given by

D =
⋂
S

[
0,

1

(k − 2)λrαk−2
r

)
=

[
0,min

S

1

(k − 2)λrαk−2
r

)

where S = {r = 1, 2, . . . , n|λrαk−2
r > 0}. Note that if λrαk−2

r ≤ 0
for all r, the domain of the solution (7) will be D = [0,∞). �

The coefficients αr can be found from the inner product between
x0 and vr . Moreover, when λr > 0 for some r, the solution (7) has
singularity points, and the system blows up within a finite time. In
general, analyzing the occurrence of blow up of solutions to polynomial
systems is challenging [25]. Thus, our approach offers a simple way to
detect the singularity behaviors of an HPDS. When k = 2, the result
reduces to the linear systems’ solutions, i.e.,

lim
k→2

x(t) = lim
k→2

n∑
r=1

(
1− (k − 2)λrα

k−2
r t

)− 1
k−2 αrvr

= lim
p→∞

n∑
r=1

(
1 +

λrt

p

)p
αrvr =

n∑
r=1

exp {λrt}αrvr

where λr become the eigenvalues of the dynamic matrix with the
corresponding eigenvectors vr .
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B. Stability

In linear control theory, it is conventional to investigate so-called
(internal) stability [26]. We are able to discuss the stability properties
of an odeco HPDS based on the explicit solution (7). First, we explore
the number of equilibrium points of an odeco HPDS, which is similar
to the cases in linear systems.

Proposition 2: The odeco HPDS (6) has a unique equilibrium point
at the origin if λr �= 0 for all r = 1, 2, . . . , n, where λr are the Z-
eigenvalues from the orthogonal decomposition of A; otherwise, it has
infinitely many equilibrium points.

Proof: Suppose that the equilibrium pointxe =
∑n
r=1 ervr (where

vr are the Z-eigenvectors). Similarly, it can be shown that

Axk−1
e =

n∑
r=1

λre
k−1
r vr = 0.

Since vr are linearly independent, λrek−1
r = 0. Thus, if λr �= 0, then

er = 0 for all r, which implies that the odeco HPDS (6) has a unique
equilibrium point at the origin. If λr = 0 for some r, the correspond-
ing er can be chosen arbitrarily, and the system has infinitely many
equilibrium points. �

We only need to focus our attention on the equilibrium point at
the origin since the behaviors of other equilibrium points will be the
same (similar to linear systems). The equilibrium point xe = 0 of an
odeco HPDS is called stable if ‖x(t)‖ ≤ γ‖x0‖ for initial condition
x0 and γ > 0, asymptotically stable if ‖x(t)‖ → 0 as t→ ∞, and
unstable if ‖x(t)‖ → ∞ as t→ c for c > 0 (which is also referred to
as finite-time blow up in the literature [25]). Here, “‖ · ‖” denotes the
Frobenius norm. We discover that the stability properties of the odeco
HPDS (6) at the equilibrium point xe = 0 are similar to those of linear
systems, but depend on both the Z-eigenvalues of A and the initial
conditions.

Proposition 3: Suppose that k ≥ 3. Let the initial condition x0 =∑n
r=1 αrvr . For the odeco HPDS (6), the equilibrium point xe = 0 is

1) stable if and only if λrαk−2
r ≤ 0 for all r = 1, 2, . . . , n;

2) asymptotically stable if and only if λrα
k−2
r < 0 for all r =

1, 2, . . . , n;
3) unstable if and only if λrαk−2

r > 0 for some r = 1, 2, . . . , n,
where λr are the Z-eigenvalues from the orthogonal decomposition of
A.

Proof: By the triangle inequality, it can be shown that

‖x(t)‖ = ‖
n∑
r=1

cr(t)vr‖ ≤
n∑
r=1

|cr(t)|‖vr‖ =
n∑
r=1

|cr(t)|.

Since λrα
k−2
r ≤ 0 for all r = 1, 2, . . . , n, the coefficient functions

|cr(t)| are bounded by |αr| over t ∈ [0,∞). Then, we have

‖x(t)‖ ≤
n∑
r=1

|αr| = ‖x0‖1 ≤ √
n‖x0‖.

Therefore, the equilibrium point xe = 0 is stable. On the other hand,
since vr are orthonormal, ‖x(t)‖ = ‖Vc(t)‖ = ‖c(t)‖, where V and
c(t) are the same as defined in Proposition 1. If ‖x(t)‖ = ‖c(t)‖ ≤
γ‖x0‖, all the coefficient functions cr(t) must be bounded for t ≥ 0.
Thus, λrαk−2

r must lie in the closed left-half plane for all r. The other
two cases can be shown similarly. �

When k = 2, the abovementioned conditions reduce to the famous
linear stability conditions. The inequalities obtained from the asymp-
totic stability condition can provide us with the region of attraction of
the odeco HPDS (6), i.e.,

R =

{
x : λrα

k−2
r < 0 where x =

n∑
r=1

αrvr

}
(9)

where vr are the Z-eigenvectors from the orthogonal decomposition of
A corresponding to the Z-eigenvalues λr . Furthermore, when k is even,
αk−2
r will always be greater than or equal to zero. Thus, the stability

conditions can be simplified for the odeco HPDS (6) of odd degree.
Corollary 1: Suppose that k ≥ 4 is even. For the odeco HPDS (6),

the equilibrium point xe = 0 is
1) stable if and only if λr ≤ 0 for all r = 1, 2, . . . , n;
2) asymptotically stable if and only if λr < 0 for all r = 1, 2, . . . , n;
3) unstable if and only if λr > 0 for some r = 1, 2, . . . , n,

where λr are the Z-eigenvalues from the orthogonal decomposition of
A.

Proof: The results follow immediately from Proposition 3 when k
is even. �

When k is even, the stability conditions are exactly the same as
those from linear systems, i.e., the odeco HPDS (6) of odd degree
is globally stable if and only if all the Z-eigenvalues λr from the
orthogonal decomposition of A lie in the left-half plane. However, as
mentioned, computing the Z-eigenvalues of a supersymmetric tensor is
NP-hard [21]. If we know an upper bound of the largest Z-eigenvalue
of a supersymmetric tensor, it will save a great amount of computation
to determine the asymptotic stability of the odeco HPDS (6). Chen [9]
found that the largest Z-eigenvalue of an even-order supersymmetric
tensor is upper bounded by the largest eigenvalue of one of its unfolded
matrices.

Lemma 1: Let A ∈ R
n×n×···×n be an even-order supersymmetric

tensor. Then the largest Z-eigenvalue λmax of A is upper bounded by
μmax where μmax is the largest eigenvalue of ψ(A) defined as

A = ψ(A) such that Aj1i1...jkik
ψ−→ Aji (10)

with j = j1 +
∑k
p=2(jp − 1)np−1 and i = i1 +

∑k
p=2(ip − 1)np−1.

Corollary 2: Suppose that k ≥ 4 is even. For the odeco HPDS (6),
the equilibrium point x = 0 is
1) stable if μmax ≤ 0;
2) asymptotically stable if μmax < 0,

where μmax is the largest eigenvalue of ψ(A) defined in (10).
Proof: Based on Lemma 1, we know that λ1 ≤ λmax ≤ μmax.

Therefore, the result follows immediately from Corollary 1. �
Note that λ1 is the largest Z-eigenvalue from the orthogonal de-

composition of A, whereas λmax is the largest Z-eigenvalue of A.
There are many other upper bounds for the largest Z-eigenvalue of a
supersymmetric tensor [27], [28]. Given an odeco dynamic tensor, the
better upper bound of the largest Z-eigenvalue, the stronger stability
conditions we can obtain.

IV. ODECO HPDS WITH CONSTANT CONTROL

The constant control problem has arisen in many dynamical systems
and control applications. For example, model predictive control has
been successfully implemented for stable plants based on linear models
by optimizing a constant input on the whole horizon [29]. In the context
of population dynamics modeled by HPDS, constant inputs can be
viewed as migration or supply rates for different population groups.
Therefore, it is significant to investigate the system properties of an
odeco HPDS with constant control, i.e.,

ẋ(t) = Ax(t)k−1 + b (11)

where A ∈ R
n×n×···×n is a kth-order n-D odeco tensor, and b ∈ R

n

is a constant control vector. We find that the complete solution to the
polynomial dynamical system (11) can be solved implicitly by using
Gauss hypergeometric functions.

Proposition 4: Suppose that k ≥ 3. Let x(t) =
∑n
r=1 cr(t)vr with

the initial conditions cr(0) = αr . For the odeco HPDS with constant
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control (11), the coefficient functions cr(t) can be solved implicitly by

t = −
g
(
k−2
k−1

,− b̃r
λrcr(t)k−1

)
(k − 2)λrcr(t)k−2

+
g
(
k−2
k−1

,− b̃r
λrα

k−1
r

)
(k − 2)λrαk−2

r

(12)

where λr are the Z-eigenvalues with the corresponding Z-eigenvectors
vr from the orthogonal decomposition of A, b̃r are the rth entries of
V�b (V contains all the vectors vr), and g(·, ·) is the specified Gauss
hypergeometric function [30] defined as

g(a, z) = 2F1(1, a; a+ 1; z) = a

∞∑
m=0

zm

a+m
.

Proof: Since x(t) =
∑n
r=1 cr(t)vr , we can rewrite the polynomial

dynamical system (11) as follows:

Vċ(t) = V(λ ∗ c(t)[k−1]) +VV�b

⇒ ċ(t) = λ ∗ c(t)[k−1] + b̃

where b̃ = V�b. Therefore, for each coefficient function cr(t), we
have

ċr(t) = λrcr(t)
k−1 + b̃r. (13)

The differential equation (13) is a particular form of the Chini’s equa-
tion [31], and can be solved implicitly by using Gauss hypergeometric
functions. Based on the method of separation of variables, it can be
shown that ∫

1

λrcr(t)k−1 + b̃r
dcr(t) =

∫
1dt

⇒ −
g
(
k−2
k−1

,− b̃r
λrcr(t)k−1

)
(k − 2)λrcr(t)k−2

= t+ wr.

Plugging the initial conditions yields

t = −
g
(
k−2
k−1

,− b̃r
λrcr(t)k−1

)
(k − 2)λrcr(t)k−2

+
g
(
k−2
k−1

,− b̃r
λrα

k−1
r

)
(k − 2)λrαk−2

r

and the proof is complete. �
The solutions of cr(t) can be further solved by any nonlinear solver

given a specific time point t. We then can recover the complete solution
of x(t) based on the values of cr(t). Moreover, although g(a, z) is
defined for |z| < 1, it can be analytically continued along any path in
the complex plane that avoids the branch points one and infinity [32].
When k = 3, the differential equation (13) is also known as the Riccati
equation, which can be converted to a second-order linear system.

V. EXTENSION TO GENERAL HPDS

In this section, we extend the previous results to general HPDS. First,
we introduce the notion of almost symmetric for cubical tensors.

Definition 1: Akth-ordern-D tensor A ∈ R
n×n×···×n is called almost

symmetric if it is symmetric only respect to its first k − 1 modes.
Proposition 5: Every HPDS of degree k − 1 can be represented by

ẋ(t) = Ax(t)k−1 (14)

where A ∈ R
n×n×···×n is a kth-order almost symmetric tensor.

Proof: Since A is almost symmetric, its (k − 1)th-order sub-tensors
A::...j are supersymmetric for j = 1, 2, . . . , n. We know that every ho-
mogeneous polynomial of degree k − 1 can be uniquely represented by
a (k − 1)th-order supersymmetric tensor. Therefore, the result follows
immediately. �

The colon operator “:” in the proof acts as shorthand to include all
subscripts in a particular array dimension as used in MATLAB. Since
A is almost symmetric, a CP decomposition of A can be written as

A =

R∑
r=1

vr ◦ vr ◦ · · · ◦ v(f)
r . (15)

Algorithm 1: Determining if a general HPDS can be transformed
to an odeco HPDS.

1: Given a general HPDS of the form (14) and a threshold ε
(default: ε = 10−14)

2: Create a CP decomposition model
model = struct

3: Randomly initialize a variable R ∈ R
n×n and a weight

vector λ ∈ R
n

model.variable.R = randn(n,n)
model.variable.w = randn(1,n)

4: Impose the conditions on the structure of the factor matrices
such that V = R and V(f) = (R−1)�

model.factor.w = ‘w’
model.factor.V = ‘R’

model.factor.Vf = {‘R’,@(z,task)
struct_invtransp(z, task)}

5: Compute a CP decomposition decomposition of the dynamic
tensor A based on the imposed conditions

model.factorizations.symm.data = A
model.factorizations.cpd =

{‘V’,. . .,‘V’,‘Vf’,‘w’}
cpd = sdf_nls(model)

6: Use the obtained factor matrices V and V(f) with the weight
vector λ to build the estimated tensor Â

w = cpd.factors.w
V = cpd.factors.V

Vf = cpd.factors.Vf
Ahat = cpdgen({V,. . .,V,Vf,w})

7: if ‖A − Â‖ < ε then
8: The HPDS with dynamic tensor A can be transformed to an

odeco HPDS
9: end if

Without loss of generality, we multiply the weights λr into the vector
v
(f)
r beforehand. Our goal is to construct a linear transformation P ∈

R
n×n with x(t) = Py(t) such that the transformed system can be

represented by an odeco tensor, i.e.,

ẏ(t) = Ãy(t)k−1 (16)

where Ã ∈ R
n×n×···×n is a kth-order odeco tensor.

Proposition 6: Suppose that A ∈ R
n×n×···×n has a CP decomposition

of the form (15) with R = n. If there exist an invertible linear trans-
formation P ∈ R

n×n and a diagonal matrix Λ ∈ R
n×n that satisfy the

following conditions:
1) P�V = P−1V(f)Λ−1;
2) P�V is an orthogonal matrix,

where V ∈ R
n×n and V(f) ∈ R

n×n are the matrices that contain all
the vectors vr and v

(f)
r , respectively, then the HPDS (14) can be

transformed to the odeco HPDS (16).
Proof: Since y(t) = P−1x(t), we can write

ẏ(t) = P−1ẋ(t) = P−1
(
Ax(t)k−1

)
= P−1

[(
n∑
r=1

vr ◦ vr ◦ · · · ◦ v(f)
r

)
(Py(t))k−1

]

=

(
n∑
r=1

P�vr ◦P�vr ◦ · · · ◦P−1v(f)
r

)
y(t)k−1.
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If P�V = P−1V(f)Λ−1, then(
n∑
r=1

P�vr ◦P�vr ◦ · · · ◦P−1v(f)
r

)
y(t)k−1

=

(
n∑
r=1

P�vr ◦P�vr ◦ · · · ◦ λrP�vr

)
y(t)k−1

where λr are the rth diagonal entries of Λ. Moreover, if P�V is an
orthogonal matrix, the transformed dynamic tensor

Ã =
n∑
r=1

λrP
�vr ◦P�vr ◦ · · · ◦P�vr

is odeco. Thus, the result follows immediately. �
The abovementioned two conditions can be further simplified.
Corollary 3: Suppose that A ∈ R

n×n×···×n has a CP decomposition
of the form (15) with R = n. Let V ∈ R

n×n and V(f) ∈ R
n×n be the

matrices that contain all the vectorsvr andv(f)
r , respectively. LetW =

(V−1)�. If there exist λr ∈ R such that wr = λ−1
r v

(f)
r for all r (wr

are the column vectors of W), then the HPDS (14) can be transformed
to the odeco HPDS (16).

Proof: The result follows immediately by combining the two con-
ditions from Proposition 6, i.e., PP�V = V(f)Λ−1 ⇒ PP−1W =
V(f)Λ−1 ⇒ W = V(f)Λ−1. �

The MATLAB toolbox TensorLab [33] offers a nice feature in com-
puting a CP decomposition of a tensor by imposing specific structure
on the factor matrices. Detailed steps of determining if a general HPDS
can be converted to an odeco HPDS are summarized in Algorithm 1,
where “‖ · ‖” denotes the tensor Frobenius norm in Step 7, and all
the syntaxes can be found in the TensorLab toolbox. Although the
conditions imposed on the factor matrices are restricted, one can adjust
the values of ε to obtain an approximated odeco HPDS regardless of
the CP rank of the dynamic tensor. In other words, Algorithm 1 can be
applied to any dynamic tensor and return an approximated odeco tensor
with an error up to threshold ε. As long as ε is selected reasonably,
the properties of the approximated odeco HPDS should be close to
these of the original HPDS. After determining that an HPDS can be
converted to or approximated by an odeco HPDS, one can compute
the linear transformation P for an arbitrary orthonormal basis, i.e.,
P�V = U, whereU is an arbitrary orthogonal matrix. Since the trans-
formed state y(t) can be solved explicitly, the solution of the original
HPDS is then given by x(t) = Py(t). The results of stability also
follow.

VI. NUMERICAL EXAMPLES

All the numerical examples presented were performed on a Macin-
tosh machine with 16 GB RAM and a 2 GHz Quad-Core Intel Core i5
processor in MATLAB R2020b.

A. Synthetic Example

Given a following 2-D odeco HPDS of degree three:{
ẋ1 = −1.2593x31 + 1.6630x21x2 − 1.5554x1x

2
2 − 0.1386x32

ẋ2 = 0.5543x31 − 1.5554x21x2 − 0.4158x1x
2
2 − 0.7037x32

it can be represented in the form of (6) with

A::11 =

[
−1.2593 0.5543

0.5543 −0.5185

]
A::12 =

[
0.5543 −0.5185

−0.5185 −0.1386

]

A::21 =

[
0.5543 −0.5185

−0.5185 −0.1386

]
A::22 =

[
−0.5185 −0.1386

−0.1386 −0.7037

]

Fig. 2. Synthetic example. Vector field plot of the odeco HPDS.

such that A is odeco. The two Z-eigenvalues in the orthogonal de-
composition of A are λ1 = −1 and λ2 = −2. Therefore, according to
Corollary 1, the odeco HPDS is globally asymptotically stable. The
vector field of the system is shown in Fig. 2.

B. Population Model

The goal of this example is to show the odeco structure in modeling
population dynamics in ecological systems. Suppose that there are
two species s1 and s2 with state variables x1 and x2 representing the
abundance of the two species, the two factor vectors (which forms an or-
thonormal basis) for constructing the odeco dynamic tensor are given by

v1 =

[√
2
2√
2
2

]
and v2 =

[ √
2
2

−
√
2
2

]

and the order of the tensor is four (i.e., k = 4). Each factor vector is
able to tell the latent interactions between the two species. The first
vector v1 indicates that the two species are self-promoted with mutual
positive regulations, whereas the second vector v2 implies that the
two species are self-promoted with mutual negative regulations. The
interactions between the two species become clearer when we have
the expanded forms generated by v1 and v2, respectively, i.e.,⎧⎨

⎩
ẋ1 = 1

4
x31 +

(
3
4
x21x2 +

3
4
x1x

2
2 +

1
4
x32
)

ẋ2 = 1
4
x32 +

(
3
4
x22x1 +

3
4
x2x

2
1 +

1
4
x31
)

⎧⎨
⎩
ẋ1 = 1

4
x31 −

(
3
4
x21x2 − 3

4
x1x

2
2 +

1
4
x32
)

ẋ2 = 1
4
x32 −

(
3
4
x22x1 − 3

4
x2x

2
1 +

1
4
x31
)
.

Suppose that λ1 = λ2 = 2. Therefore, the overall population dynamics
between the two species is given by{

ẋ1 = x31 + 3x1x
2
2

ẋ2 = x32 + 3x2x
2
1

where the two species are self-promoted with mutual positive regula-
tions, see Fig. 3(a). According to Corollary 1, the system will blow
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Fig. 3. Population model example. (a) Schematic plot of two species
with interactions described by the odeco HPDS. (b) Plot of the trajec-
tories of the population dynamics. We used the initial condition x0 =
[0.5 0.1]� in generating the plot.

Fig. 4. Population model with constant control example. (a) Plot of
the three implicit coefficient functions. (b) Plot of the trajectories of the
population dynamics. We used the initial condition x0 = [1 1 1]� in
generating the two plots.

up within a finite time due to the positive Z-eigenvalues. Intuitively,
self-promotion and positive regulation between the two species will
result in an uncontrollable blow up of the two populations very quickly,
see Fig. 3(b). Based on Proposition 1, the blow up time (i.e., singularity
point) for the two species can be computed, which is given by t =
min {1/(4α2

1), 1/(4α
2
2)} (where α1 and α2 depend on the initial con-

ditions as described in Proposition 1). Although finite-time blow up of
populations is even worse than unbounded growth, it is actually possible
to occur in modeling ecological systems [34]. Hence, we can conclude
that the two species cannot coexist under a confined ecological system.

C. Population Model With Constant Control

In this example, we consider a population model with pairwise and
third-order interactions of the following form:

ẋi
xi

= ri +
n∑
j=1

n∑
k=1

Bijkxjxk (17)

where xi and ri represent the abundance and the intrinsic growth
rate (i.e., reproduction and mortality rates) of species si, respectively,
and B is an interaction tensor that captures pairwise and third-order
interactions among species. Detailed descriptions of third-order inter-
actions can be found in [2]. If the second term in (17) is replaced
by

∑n
j=1 Bijxj (i.e., purely pairwise interactions), the population

dynamics will become the classical generalized Lotka–Volterra model.
For our purpose, we assume that the reproduction rate is equal to the
mortality rate for each species, i.e., ri = 0. In fact, the population model

described in the second example can also be modeled using (17). We
further assume that each species has a supply rate (i.e., a constant input).
Thus, we define our population model with pairwise and third-order
interactions among three species as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ1 = −x31 − 3x21x2 − 3x1x

2
2 + 2

ẋ2 = −x32 + 2

ẋ3 = −x33 − 3x21x3 − 3x1x
2
3 − 3x22x3

−3x2x
2
3 − 6x1x2x3 + 2.

In our model, each species is self-regulated (e.g., intraspecific competi-
tion) with a supply rate. The growth of species s1 is inhibited by species
s2, and the growth of species s3 is inhibited by species s1, species s2,
and a combined effect from species s1 and s2.

The system of differential equations can be represented in the
form of (11) such that A ∈ R

3×3×3×3 is almost symmetric and b =[
2 2 2

]�
. Using Algorithm 1, we can confirm that the system can

be transformed to an odeco HPDS with constant control, where the
Frobenius norm error is about 1.27× 10−15. The two factor matrices
of A returned by Algorithm 1 are given by

V =

⎡
⎢⎣
1 0 1

1 1 1

0 0 1

⎤
⎥⎦ and V(f) =

⎡
⎢⎣

1 −1 0

0 1 0

−1 0 1

⎤
⎥⎦

with weights λ1 = λ2 = λ3 = −1. For simplicity, we chose the stan-
dard basis to construct the odeco tensor, with which the transformation
matrix is computed as

P = (IV−1)� =

⎡
⎢⎣

1 −1 0

0 1 0

−1 0 1

⎤
⎥⎦ .

Suppose that x(t) = Py(t) and y(t) =
∑3
r=1 cr(t)er , where er are

the 3-D standard basis vectors. Based on Proposition 4, the coefficient
functions cr(t) can be solved implicitly by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t =
g(2/3,4/c3

1
)

2c2
1

− g(2/3,4/α3
1
)

2α2
1

t =
g(2/3,2/c3

2
)

2c2
2

− g(2/3,2/α3)

2α2
2

t =
g(2/3,6/c3

3
)

2c2
3

− g(2/3,6/α3
3
)

2α2
3

where cr(0) = αr for all r. According to the properties of Gauss
hypergeometric functions, it can be shown that the three implicit func-
tions have vertical asymptotes at c1 = 3

√
4, c2 = 3

√
2, and c3 = 3

√
6,

respectively, regardless of the initial conditions, see Fig. 4(a). This
implies that the transformed system achieves global asymptotic stability
at the equilibrium point. Thus, the equilibrium point of the original
population dynamics, which is given by

xe =
[
0.3275 1.2599 0.2297

]�
is also globally asymptotically stable, see Fig. 4(b). Ecologically, we
can conclude that the three species can coexist with supply rates.

VII. CONCLUSION

In this article, we investigated the explicit solution and the stability
properties of a continuous-time odeco HPDS. We derived an explicit
solution formula using the Z-eigenvalues and the Z-eigenvectors from
the orthogonal decomposition of the corresponding dynamic tensor.
By utilizing the form of the explicit solution, the stability properties
of the system could be formalized. In particular, the Z-eigenvalues
can offer necessary and sufficient stability conditions. Furthermore,
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we explored the complete solution of an odeco HPDS with constant
control. Finally, we provided criteria to determine if a general HPDS
can be transformed to or approximated by an odeco HPDS with detailed
algorithmic procedures. It will be worthwhile to investigate stronger
results on approximating a general HPDS by an odeco HPDS. Fu-
ture work also includes exploring stabilizability of odeco HPDS. For
example, how to design a linear/polynomial control in order to shift
the unstable Z-eigenvalues of an odeco HPDS to the left-half plane?
Further, tensor algebra-based computation for Lyapunov equations and
Lyapunov stability is important for future research.
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