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Abstract

Recent advances in biological technologies, such as multi-way chromosome conformation

capture (3C), require development of methods for analysis of multi-way interactions. Hyper-

graphs are mathematically tractable objects that can be utilized to precisely represent and

analyze multi-way interactions. Here we present the Hypergraph Analysis Toolbox (HAT), a

software package for visualization and analysis of multi-way interactions in complex systems.

Author summary

Classical networks typically focus on pairwise interactions and may overlook the intricate

higher-order, multi-way interactions that occur among groups of nodes within a network.

Our research has delved into the structural and dynamic characteristics of hypergraphs,

which can effectively capture multi-way network interactions across various domains and

data types. In this article, we introduce the Hypergraph Analysis Toolbox (HAT), a soft-

ware package encompassing a range of techniques to identify, investigate, and visualize

multi-way interactions in biological data.

This is a PLOS Computational Biology Software paper.

Introduction

Network science is a powerful framework for studying complex systems. However, recent

work highlights the limitations of classical methods in networks, which only consider pairwise

interactions between nodes to describe group interactions. Use of hypergraphs, in which an

edge can connect more than two nodes, has therefore emerged as a new frontier in network

science [1–3].
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Chromosome conformation capture (3C) methods identify physical interactions (“contacts”)

between genomic loci [4, 5]. While classical 3C is pairwise, recent advancements capture multi-

way chromatin interactions via proximity ligation (see Pore-C in S1 File) [6], Split-Pool Recogni-

tion of Interactions by Tag Extension (SPRITE) [7, 8], or multi-contact 3C (MC-3C) [9]. How-

ever, the investigation and biological interpretation of these multi-way contacts is hampered by

scarcity of methods for multi-way data [6, 10]. Hypergraphs are a mathematically tractable exten-

sion of graph theory that precisely represent multi-way interactions (See Hypergraphs in S1 File)

[2]. We introduce the Hypergraph Analysis Toolbox (HAT), a general purpose software for the

analysis of multi-way interactions and higher-order structures. HAT contains both well-studied

and novel mathematical methods for hypergraph analysis in both MATLAB and Python.

Motivated to investigate Pore-C data, HAT is designed as a versatile software for hyper-

graph analysis. While there are several robust libraries for graph analysis, most hypergraph

software is not multi-faceted and targets specific problems, such as hypergraph partitioning or

clustering (Table 1). As a general purpose tool, the algorithms implemented in HAT address

hypergraph construction, visualization, and the analysis of structural and dynamic properties.

HAT is the first software to utilize tensor algebra for hypergraph analysis [11–13], and it con-

tains recently developed methods for hypergraph similarity measures [13]. HAT is open

source, standardized across MATLAB (version 2021b onward) and Python (version 3.7

onward) implementations, and is documented at https://hypergraph-analysis-toolbox.

readthedocs.io, where it will continue to be maintained and developed.

For ease of use, the MATLAB and Python implementations are functionally independent

but syntactically similar. The software may be installed from the online documentation,

GitHub, or via PIP and the MathWorks file exchange for the respective Python and MATLAB

implementations.

Materials and methods

HAT can visualize and analyze multi-way interactions. The incidence matrix is the primary

representation of hypergraphs in HAT (Fig 1b) [10, 23]. HAT targets the following hypergraph

features and problems: (1) construction from data [24–26], (2) expansion and numeric repre-

sentation [27–29], (3) characteristic structural properties (such as entropy [11], centrality [30],

distance [13], and clustering coefficients [11]), (4) controllability [12], and (5) similarity mea-

sures [13]. The workflow for using HAT is outlined in Fig 1e.

Construction from data

There are two approaches for constructing a hypergraph from data (see Hypergraphs in S1

File). Data formats with explicit multi-way interactions, such as Pore-C are directly input to

HAT for hypergraph construction. However, the vast majority of data are either pairwise

Table 1. Comparison of HAT to well-documented hypergraph libraries. There are several other notable hypergraph

software not listed in the table [19–22].

Software Language Features

Hypergraph Analysis

Toolbox

MATLAB and

Python

construction, visualization, expansion, similarity measures, centrality,

entropy, tensor- based analysis, controllability

HyperNetX [14] Python clustering, visualization, homology, clustering

HALP [15] Python directed hypergraphs, walks, partitioning

hMETIS [16] C/C++ partitioning, implemented in parallel

Phoenix [17] C/C++ clustering, implemented in parallel

HyperG [18] R hypergraph creation, clustering, graph based representations and

calculations, visualization

https://doi.org/10.1371/journal.pcbi.1011190.t001
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(https://github.com/Jpickard1/Hypergraph-

Analysis-Toolbox), PyPI (https://pypi.org/project/

HypergraphAnalysisToolbox/), and MATLAB

Central (https://www.mathworks.com/

matlabcentral/fileexchange/121013-hat-

hypergraph-analysis-toolbox), which are all linked

on the main page. All issue and bug tracking for the

software are handled through GitHub issues

(https://github.com/Jpickard1/Hypergraph-

Analysis-Toolbox/issues) which is also referenced

from the main page. Tutorials on usage of the HAT

are available through Google CoLab and MATLAB

Online (https://hypergraph-analysis-toolbox.

readthedocs.io/en/latest/tutorials.html).
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observations (e.g., Hi-C) or do not contain either pairwise or multi-way interactions (e.g.,

sequencing data), so we implemented three measures to infer multi-way relationships based

on multi-correlation measures [24–26]. HAT constructs hyperedges by setting a minimum

threshold for the multi-correlation to be considered a hyperedge.

Expansion and numerical representation

For uniform hypergraphs, the adjacency, degree, and Laplacian tensors (Fig 1c) are provided

and utilized in similarity, entropy, and controllability calculations (see Numeric Representa-

tions of Hypergraphs in S1 File). Such tensor based calculations are not currently supported

for non-uniform hypergraphs and will be pursued in the future. However, both uniform and

non-uniform hypergraphs expand to pairwise structures (Fig 1d, see Hypergraph Expansions

in S1 File). HAT contains hypergraphs expansions to generate clique expansions, star expan-

sions, and line graphs. These representations facilitate indirect hypergraph similarity and

entropy measures for non-uniform hypergraphs. Each hypergraph expansion has unique adja-

cency, degree, Laplacian, and normalized Laplacian matrices [27–29].

Fig 1. HAT overview. a. The Pore-C assay identifies multi-way chromatin strand colocalization within the nucleus [6].

b. Hypergraph representation of Pore-C is drawn where each chromatin strand is represented as a vertex and the

multi-way contacts are hyperedges. This is depicted as both a hypergraph and an incidence matrix. c. For multi-way

contacts of uniform size, hypergraphs are numerically represented as an adjacency tensor or multi-dimensional matrix.

d. Multi-way structure are decomposed with clique and star expansions that generate virtual pairwise contacts [6]. e.

The workflow of HAT to construct hypergraphs from data, visualize, represent numerically, and computations

available for each representation are outlined as a flowchart.

https://doi.org/10.1371/journal.pcbi.1011190.g001
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Characteristic structural properties

The following structural properties of hypergraphs are computed: average distance between

nodes is computed based on [13] (see Hypergraph Structural Properties in S1 File, Equation

S1); the clustering coefficient is calculated based on [11] (Equation S2); hypergraph centrality

is measured according to methods in [30, 31], which employ a variety of techniques to solve

the nonlinear eigenvalue problem. For a uniform hypergraph, entropy is computed according

to [11], which is defined based on the higher-order singular values of the Laplacian tensor

(Equation S3). For non-uniform hypergraphs, standard graph entropy measures are applied to

the aforementioned hypergraph expansions.

Controllability

Hypergraph controllability refers to the ability to steer the underlying system of a hypergraph

to a desired state by manipulating a subset of nodes (often referred to as driver nodes) [12].

For a uniform hypergraph, the minimum number of driver nodes required for controllability

can be computed using the generalized Kalman’s rank condition (see Hypergraph Controlla-

bility in S1 File, Equation S7). HAT is the first software to analyze controllability properties of

hypergraphs.

Similarity measures

Hypergraph similarity is measured according to the recent work [13], which distinguishes

direct and indirect hypergraph similarity measures. Direct measures utilize tensor representa-

tions of uniform hypergraphs; indirect measures utilize graph similarity measures applied to

hypergraph expansions. A series of structural and feature-based hypergraph similarity mea-

sures, including the Hamming Distance, the Jaccard Index, spectral measures, and centrality

measures are provided (see Hypergraph Similarity Measures in S1 File, Equation S4 and S5).

HAT is the first software to implement hypergraph similarity using a tensor representation

based on the novel methods in [13].

Results

Methods contained in HAT were utilized to examine Pore-C data (Fig 1a, see Pore-C in S1 File)

[10]. Hypergraphs were constructed from Pore-C data from multiple cell types. Hypergraph

similarity measures were employed to compare the structural similarity between different

regions of the genome and cell types. In terms of biological implications, hypergraph entropy of

chromosome structure has identified bifurcation points that determined cell fate over the course

of a cell reprogramming experiment, which remained unidentified with a graph-theoretic

approach [11]. Hypergraph analysis was also integrated with other sequencing modalities to

identify transcriptional clusters and elucidate the higher-order organization of the genome [10].

In addition to examining Pore-C data, HAT was also used to quantify the activity of hypo-

thalamic neurons monitored during a mouse feeding, fasting, and re-feeding experiment [32].

When constructing graph and hypergraph representations of the neuronal network within the

hypothalamus for each phase of the experiment, hypergraph entropy proved to be a better

indicator of changes in neuronal activity compared to graph entropy [11]. A similar result was

also observed from a controllability/observability perspective under the same setting [12, 33].

Other applications of HAT include detecting influential hubs in social networks [34, 35],

gaining insights into the stability and robustness of biochemical reaction networks [36, 37],

identifying keystone species in ecological networks [38], and pinpointing control targets in

epidemiological networks [39].
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Discussion

Hypergraphs can represent multi-way relationships unambiguously. The computational meth-

ods provided in HAT include hypergraph controllability and similarity measures from a ten-

sor-based perspective. Additionally, the inclusion of tensor-based hypergraph structural

properties (i.e., entropy and centrality), the association of multi-correlations with hypergraphs,

and the integration of previously implemented graph expansion and visualization techniques

within one software is an advancement over previously disjoint implementations. Therefore,

HAT can advance the study of multi-way interactions in the genome or other complex biologi-

cal systems.

Supporting information

S1 File. Supplementary information for HAT.

(PDF)
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