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Abstract

Motivation: Feature selection is a powerful dimension reduction technique which selects a subset of relevant
features for model construction. Numerous feature selection methods have been proposed, but most of them fail
under the high-dimensional and low-sample size (HDLSS) setting due to the challenge of overfitting.

Results: We present a deep learning-based method—GRAph Convolutional nEtwork feature Selector (GRACES)—to
select important features for HDLSS data. GRACES exploits latent relations between samples with various
overfitting-reducing techniques to iteratively find a set of optimal features which gives rise to the greatest decreases
in the optimization loss. We demonstrate that GRACES significantly outperforms other feature selection methods on
both synthetic and real-world datasets.

Availability and implementation: The source code is publicly available at https://github.com/canc1993/graces.

1 Introduction

Many biological data representations are naturally high-dimensional
and low-sample size (HDLSS) (Berrar et al. 2003; Leung and Cavalieri
2003; Alipanahi et al. 2015; Auton et al. 2015; Uffelmann et al. 2021).
RNA sequencing (RNA-Seq) is a next-generation sequencing technique
to reveal the presence and quantity of RNA in a biological sample at a
given moment (Kukurba and Montgomery 2015). RNA-Seq datasets
often contain a huge amount of features (e.g.� 105), while the number
of samples is very small (e.g. � 103). Analyzing RNA-Seq data is cru-
cial for various disciplines in biomedical sciences, such as disease diag-
nosis and drug development (Berrar et al. 2003; Leung and Cavalieri
2003). However, such data not only have low-sample sizes, but its fea-
tures might also be highly collinear (i.e. linearly correlated). Both
attributes would lead to the challenge of overfitting, i.e. poor generaliz-
ability, when performing machine learning tasks such as feature selec-
tion on HDLSS data (Kim and Kim 2018).

A useful technique in dealing with high-dimensional data is feature
selection, which aims to select an optimal subset of features. Although
the selection of an optimal subset of features is an NP-hard problem
(Chen et al. 1997), various compromised feature selection methods have
been proposed. While feature selection methods are often grouped into
filtering, wrapped, and embedded methods (Sta�nczyk 2015), in this art-
icle, we classify them into five categories—statistics-based (Golugula
et al. 2011; Zuber and Strimmer 2011; Bommert et al. 2020), Lasso-

based (Tibshirani 1996; Yamada et al. 2014), decision tree-based (Xu
et al. 2014; Bommert et al. 2020), deep learning-based (Li et al. 2016;
Liu et al. 2017), and greedy methods (Aha and Bankert 1995), according
to their learning schemes, see details in Section 2. Note that most of the
methods address the curse of dimensionality under the blessing of large-
sample size (Liu et al. 2017). Only a few of them can handle HDLSS
data. The state-of-the-art feature selection methods for HDLSS data are
Hilbert–Schmidt independence criterion (HSIC) Lasso (Yamada et al.
2014, 2018) and deep neural pursuit (DNP) (Liu et al. 2017).

In this article, we propose a graph neural network-based feature
selection method—GRAph Convolutional nEtwork feature Selector
(GRACES)—to extract features by exploiting the latent relations be-
tween samples for HDLSS data. Inspired by DNP, GRACES is a
deep learning-based method that iteratively finds a set of optimal
features. GRACES utilizes various overfitting-reducing techniques,
including multiple dropouts, introduction of Gaussian noises, and
F-correction, to ensure the robustness of feature selection. We dem-
onstrate that GRACES outperforms HSIC Lasso and DNP (and
other baseline methods) on both synthetic and real-world datasets.

The article is organized into six sections. We perform a thorough
literature review on feature selection (including traditional and
HDLSS feature selection methods) in Section 2. The main architec-
ture of GRACES is presented in Section 3. We evaluate the perform-
ance of GRACES along with several representative methods on both
synthetic and real-world datasets in Section 4. We perform an
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ablation study and discuss the drawbacks of GRACES in Section 5.
Finally, we conclude with future research directions in Section 6.

2 Related work

Univariate statistical tests have been widely applied for feature selection
(Bommert et al. 2020; Golugula et al. 2011). The computational advan-
tage allows them to perform feature selection on extremely high-
dimensional data. The ANOVA (analysis of variance) F-test (Stahle et al.
1989) is one of the most commonly used statistical methods for feature
selection. The value of the F-statistic is used as a ranking score for each
feature, where the higher the F-statistic, the more important is the corre-
sponding feature (Bommert et al. 2020). Other classical statistical meth-
ods, including the student’s t-test (Owen 1965), the Pearson correlation
test (Meng et al. 1992), the Chi-squared test (Plackett 1983), the
Kolmogorov–Smirnov test (Daniel 1990), the Wilks’ lambda test (El
Ouardighi et al. 2007), and the Wilcoxon signed-rank test (Wilcoxon
1992), can be applied for feature selection in a similar manner.
Empirically, the ANOVA F-test is able to achieve a relatively good per-
formance in feature selection on some HDLSS data with very low com-
putational costs. Besides statistical tests, other tools such as correlation-
adjusted correlation estimation/regression (Zuber and Strimmer 2011)
and Bayesian analysis (Krishnapuram et al. 2004; Constantinopoulos
et al. 2006; Feng et al. 2012) have been used for feature selection.

L1-regularization, also known as the least absolute shrinkage and
selection operator (Lasso), has a powerful built-in feature selection
capability for HDLSS data (Tibshirani 1996). Lasso assumes linear
dependency between input features and outputs, penalizing on the l1-
norm of feature weights. Lasso produces a sparse solution with which
the weights of irrelevant features are zero. Yet, Lasso fails to capture
nonlinear dependency. Therefore, kernel-based Lasso such as HSIC
Lasso (Yamada et al. 2014, 2018) has been developed for handling
nonlinear feature selection on HDLSS data. HSIC Lasso utilizes the
empirical HSIC (Gretton et al. 2005) to find non-redundant features
with strong dependence on outputs. HSIC Lasso outperforms other
similar methods, including feature vector machine (Li et al. 2005),
minimum redundancy maximum relevance (Peng et al. 2005), sparse
additive model (Ravikumar et al. 2009), quadratic programming fea-
ture selection (Rodriguez-Lujan et al. 2010), and centered kernel tar-
get alignment (Cortes et al. 2012). Additionally, the l1-regularizer in
Lasso can be compatibly incorporated into different classifiers such as
logistic regression (LR Lasso) for feature selection (Meier et al. 2008).

Decision tree-based methods are also popular for feature selection,
which can model nonlinear input–output relations (Bommert et al.
2020). As an ensemble of decision trees, random forests (RF) (Breiman
2001) calculates the importance of a feature based on its ability to in-
crease the pureness of the leaf in each tree. A higher increment in
leaves’ purity indicates higher importance of the feature. In addition,
gradient-boosted feature selection (GBFS) selects features by penalizing
the usage of features that are not used in the construction of each tree
(Xu et al. 2014). However, decision tree-based feature selection meth-
ods such as RF and GBFS require large-sample size for training. Hence,
these methods often do not perform well under the HDLSS setting.

Numerous deep learning-based methods have been proposed for
feature selection (Li et al. 2016; Chen et al. 2017; Shrikumar et al.
2017; Lu et al. 2018; Borisov et al. 2019; Gui et al. 2019; Mirzaei
et al. 2020; Wojtas and Chen 2020). Like decision tree-based meth-
ods, deep neural networks also require a large number of samples for
training, so these methods often fail on HDLSS data. Nevertheless,
there are several deep learning-based feature selection methods which
are designed specifically for HDLSS data (Liu et al. 2017; Li et al.
2022). DNP learns features by using a multilayer perceptron (MLP)
and incrementally adds them through multiple dropout technique in a
nonlinear way (Liu et al. 2017). DNP overcomes the issue of overfit-
ting resulting from low-sample size and outperforms other methods
such as LR Lasso, HSIC Lasso, and GBFS on HDLSS data. An alter-
native to DNP with replacing the MLP by a recurrent neural network
is mentioned in (Chowdhury et al. 2019). Yet, DNP only uses MLP to
generate low-dimensional representations, which fails to capture
the complex latent relationships between samples. Moreover,
Deep feature screening incorporates a neural network for learning

low-dimensional representations and a multivariate rank distance cor-
relation measure (applied on the low-dimensional representations) for
feature screening (Li et al. 2022). However, the effectiveness of the
method needs further investigation.

Other frequently used feature selection methods include recur-
sive feature elimination (Guyon et al. 2002) and sequential feature
selection (Aha and Bankert 1995). The former recursively considers
smaller and smaller sets of features based on the feature importance
obtained by training a classifier. The latter is a greedy algorithm
that adds (forward selection) or removes (backward selection) fea-
tures based on the cross-validation score of a classifier. However,
both methods are computational expensive, which become infeasible
when dealing with HDLSS data.

3 Materials and methods

GRACES is an iterative algorithm which has five major components:
feature initialization, graph construction, neural network, multiple
dropouts, and gradient computation (Fig. 1). Motivated by DNP,
GRACES aims to iteratively find a set of optimal features which
gives rise to the greatest decreases in the optimization loss. For fea-
ture initialization, given a feature matrix X 2 R

n�p with n� p, we
first introduce a bias feature (e.g. an all-one column) into X and
index it by zero. The total number of features now is pþ1, and the
original features have the same index numbers as before. We initial-
ize the selected feature set S ¼ f0g, i.e. the bias feature. In other
words, the bias feature serves as the initial selected feature to start
the feature selection process.

For graph construction, we exploit the cosine similarity measure
based on the selected features in S. Given two feature vectors xi 2
R
jSj and xj 2 R

jSj for sample i and j, the cosine similarity is defined
as the cosine of the angle between them in the Euclidean space, i.e.

SCðxi;xjÞ ¼
x>i xj

jjxijj2jjxjjj2
: (1)

Considering each sample as a node, we connect two nodes if
their cosine similarity score is larger than a threshold d (which is a
hyperparameter of GRACES). The resulting similarity graph cap-
tures the latent interactions between samples and will be used in the
graph convolutional network (GCN) layer. The similarity graph is
different at each iteration, and other similarity measures, such as
Pearson correlation and Chi-squared distance (Wang et al. 2014)
(for discrete features), can also be used here.

We build the neural network with three layers: an input linear
layer, a GCN layer, and an output linear layer. In order to select the
features iteratively, we only need to consider weights along the dimen-
sions corresponding to the selected features in the input weight matrix
(in other words, for those non-selected features, the corresponding
entries in the weight matrix must be zeros) without a bias vector, i.e.

x̂j ¼ ReLUðWinputxjÞ; (2)

where xj 2 R
pþ1 is the feature vector for sample j, Winput 2 R

h1�ðpþ1Þ

is the learnable weight matrix (h1 denotes the first hidden dimen-
sion) such that the ðiþ 1Þth column is a zero vector for i 62 S.
Subsequently, we utilize one of the classical GCNs—GraphSAGE
(Hamilton et al. 2017) to refine the embeddings based on the simi-
larity graph constructed from the second step, i.e.

~xj ¼ ReLUðW1x̂ j þ
1

jN ðjÞj
X

i2NðjÞ
W2x̂ iÞ; (3)

where W1 2 R
h2�h1 and W2 2 R

h2�h1 are two learnable weight
matrices (h2 denotes the second hidden dimension), and NðjÞ
denotes the neighborhood set of node j. GraphSAGE leverages node
feature information to efficiently generate embeddings by sampling
and aggregating features from a node’s local neighborhood
(Hamilton et al. 2017). Finally, the refined embedding is further fed
into an output linear layer to produce probabilistic scores of differ-
ent classes for each sample, i.e.
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ŷ j ¼ SoftmaxðWoutput~xj þ boutputÞ; (4)

where Woutput 2 R
h2�2 is a learnable weight matrix (assuming the

labels are binary, i.e. label zero and label one) and boutput 2 R
2 is the

bias vector. We denote the predicted vector containing the probabil-
ities of label one (second entry in ŷ j) for all samples by ŷ 2 R

n.
To reduce the effect of high variance in the subsequent gradient

computation, we adopt the same strategy of multiple dropouts as
proposed in Liu et al. (2017). After training the neural network
based on the selected features, we randomly drop hidden neurons in
the GCN layer and the output layer m times with dropout probabil-
ity P (m and P are hyperparameters of GRACES). In other words,
we obtain multiple different dropout neural network models. The
technique of multiple dropouts has proved to be effectively stable
and robust for deep learning-based feature selection under the
HDLSS setting (Liu et al. 2017; Chowdhury et al. 2019).

For gradient computation, we compute the gradient regarding
the input weight for each dropout neural network model and take
the mean, i.e.

G ¼ 1

m

Xm

q¼1

@L
@W

ðqÞ
input

2 R
h1�ðpþ1Þ (5)

where L is the optimization loss, and W
ðqÞ
input is the input weight matrix

for the qth dropout model. Here we use the cross-entropy loss, i.e.

Lðy; ŷÞ ¼ �1

n

Xn

j¼1

yj log ŷj þ ð1� yjÞ logð1� ŷjÞ;

where yj and ŷj are the jth entries of y and ŷ, representing the true
label and the predicted probability of label one for sample j, respect-
ively. After obtaining the average gradient matrix, the next selected
feature can be computed based on the magnitude of the column
norm of G, i.e.

S ¼ S [ argmaxj62Sjjgjjj2; (6)

where gj is the jth column of G. The selected feature set is iteratively
updated until reaching the number of requested features, and the
final features selected by GRACES is given by S with the bias feature
removed.To further reduce the effect of overfitting due to low-
sample size, we incorporate two additional strategies in GRACES.
First, we consider introducing Gaussian noises to the weight matri-
ces of the GCN layer, i.e. adding noise matrices generated from a
Gaussian distribution with mean zero and variance r2 (which is a
hyperparameter of GRACES) to W

ðqÞ
1 and W

ðqÞ
2 , for the different

dropout models in the gradient computation step. Studies have
shown that introduction of Gaussian noises is able to boost the sta-
bility and the robustness of deep neural networks during training

(Yin et al. 2015; Li and Liu 2020; Jang et al. 2021). Second, we con-
sider correcting the feature scores (i.e. jjgjjj2) by incorporating it
with the ANOVA F-test, i.e. the final score for feature j is given by

sj ¼ agj þ ð1� aÞfj; (7)

where gj is the normalized score computed from jjgjjj2, fj is the nor-
malized score computed from the F-statistic, and a 2 ½0; 1� is the cor-
rection weight (which is a hyperparameter of GRACES). Therefore,
the selected feature set is updated by the follows:

S ¼ S [ argmaxj62Ssj: (8)

The reasons we select the ANOVA F-test are: (i) it is computa-
tionally efficient; (ii) it achieves a relatively good performance in fea-
ture selection for some HDLSS data; (iii) it does not suffer from
overfitting, so including it can reduce the effect of overfitting in
GRACES. Other statistical tests, such as the Student’s t-test, the
Pearson correlation test, and the Wilcoxon signed-rank test, can be
applied similarly. More advanced methods like HSIC Lasso or DNP
can also be considered, but might require more computational
recourses. The two overfitting-reducing strategies effectively im-
prove the performance of GRACES for HDLSS data, see Section 5.

Detailed steps of GRACES can be found in Algorithm 1. We list
all the hyperparameters of GRACES in Table 1. Although GRACES
is inspired from DNP, it differs from DNP in the following aspects:
(i) GRACES constructs a dynamic similarity graph based on the
selected feature at each iteration; (ii) GRACES exploits advanced
GCN (i.e. GraphSAGE) to refine sample embeddings according to
the similarity graph, while DNP only uses MLP which fails to cap-
ture latent associations between samples; (iii) in addition to multiple
dropouts proposed in DNP, GRACES utilizes more overfitting-
reducing strategies, including introduction of Gaussian noises and F-

Figure 1 Workflow of GRACES. GRACES consists of feature initialization that adds a bias feature served as the initial selected feature, graph construction with using cosine similarity

on the selected features, three-layer neural network with an input linear layer, GraphSAGE layer, and an output linear layer (where gray disks represent the hidden neurons in the

neural network), multiple dropouts on the hidden neurons for reducing variance in the subsequent computation, and gradient computation (with introduction of Gaussian noises or

F-correction) which gives rise to the current optimal feature according to the gradient magnitude. Note that the activation of the hidden neurons in the input linear layer depends on S

Table 1 Hyperparameters of GRACES and their values or search

ranges used in the synthetic and real-world data tests.

Hyperparameter Notation Synthetic data Real-world data

Number of requested feature K 10 f1, 2, . . ., 20g
Similarity score threshold d 0.95 0.95

First hidden dimension h1 64 64

Second hidden dimension h2 32 32

Learning rate l 0.001 0.001

Number of dropout m 10 10

Dropout probability P f0.1, 0.25, 0.75gf0.1, 0.25, 0.75g
Gaussian variance r2 f0, 0.1, 0.5g 0

Correction rate a 0 f0, 0.1, 0.5, 0.9g

Graph convolutional network-based feature selection 3
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correction, to further improve the robustness of feature selection. In
the following section, we will see that GRACES significantly outper-
forms DNP in both synthetic and real-world examples.

4 Experiments

We evaluated the performance of GRACES on both synthetic and
real-world HDLSS datasets along with six representative feature se-
lection methods, including the ANOVA F-test (Stahle et al. 1989), LR
Lasso (Meier et al. 2008), HSIC Lasso (https://github.com/riken-aip/
pyHSICLasso) (Yamada et al. 2014), RF (Breiman 2001), CancelOut
(https://github.com/unnir/CancelOut) (a traditional deep learning-
based feature selection method) (Borisov et al. 2019), and DNP
(https://github.com/KaixuYang/ENNS) (Liu et al. 2017). HSIC Lasso
and DNP are recognized as the state-of-the-art methods for HDLSS
feature selection. The reason we chose CancelOut is that it achieves a
relatively better performance compared to other deep learning-based
methods (which are not designed specifically for HDLSS data). We
did not compare with GBFS (due to the feature of early stopping),
deep feature screening (due to lack of code availability), and recursive
feature elimination and sequential feature selection (due to infeasible
computation). We used support vector machine as the final classifier
and the area under the receiver operating characteristic curve
(AUROC) as the evaluation metric for all the methods. All the experi-
ments presented were performed on a Macintosh machine with 32
GB RAM and an Apple M1 Pro chip in Python 3.9.

4.1 Synthetic datasets
We used the scikit-learn function make_classification to
generate synthetic data. The function creates clusters of points normally
distributed about vertices of a q-dimensional hypercube (q is the number
of important features) and assigns an equal number of clusters to each
class (Guyon et al. 2004). We set the number of samples to 60 and fixed
the number of important features to 10. We varied the total number of
features from 500 to 5000 and considered three synthetic datasets with

Algorithm 1 GRACES

1: Input: Feature matrix X 2 R
n�p, label vector y 2 R

n, the

number of requested feature K, score threshold d, hidden dimen-

sions h1 and h2, learning rate l, number of dropouts m, dropout

probability P, Gaussian variance r2, and correction rate a
2: Introduce a bias feature into X and index it by 0

3: Initialize S ¼ f0g
4: while jSj � Kþ 1 do

5: Construct a cosine similarity graph based on S with a

similarity score threhold d
6: Train a neural network on X and y with learning rate l,

including an input layer (with Winput 2 R
h1�ðpþ1Þ), a GCN

layer (with W1;W2 2 R
h2�h1 ), and an output layer (with

Wouput 2 R
h2�2 and boutput 2 R

2)

7: Dropout m times in the GCN and output layers of the

neural network with dropout probability P

8: Introduce Gaussian noises (generated from a Gaussian dis-

tribution with mean zero and variance r2) to the GCN layer

9: Compute the average gradient regarding the input

weight matrix

10: Correct the feature scores by the ANOVA F-test with

correction rate a
11: Update the selected feature set by (8)

12: end while

13: Drop the bias feature (i.e. the first element) from S
14: Return: Selected feature set S.

Figure 2 Synthetic datasets. Average test AUROC and correction rate with respect to the total number of features for the easy, intermediate, and hard synthetic datasets. Error

bars indicate standard error mean
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easy, intermediate, and hard classification difficulty (can be controlled
by the variable class_sep). We randomly split each dataset into 70%
training, 20% validation, and 10% testing with 20 replicates. We per-
formed grid search for finding the optimal key hyperparameters for each
method. We reported the average test AUROC (over 20 times train test
splits) with respect to the total number of features. In the meantime,
since we know the exact important features, we also reported the correc-
tion rate of the selected features during training.

The results are shown in Fig. 2. Clearly, GRACES achieves a su-
perb performance under all three modes. Notably, GRACES is able
to capture more correct important features (i.e. the correction rate
of GRACES significantly outperforms the other methods), which
leads to a better test AUROC. Moreover, the performance of
GRACES is remarkably stable regarding the increase of the total
number of features (especially under the easy and intermediate
modes). In contrast, the AUROC of the other methods (except
DNP) fluctuates drastically. Under the easy mode, most of the meth-
ods (such as the ANOVA F-test, LR Lasso, and CancelOut) accom-
plish a comparable performance (i.e. AUROC > 90%) even though
their correction rates are much lower than that of GRACES. Under
the hard mode, however, these methods become ineffective (i.e.

AUROC �50%). Finally, DNP achieves the second-best perform-
ance for the three synthetic datasets.

4.2 Real datasets
We used the same biological datasets from the DNP paper (Liu et al.
2017), which includes:

• Colon: Gene expression data from colon tumor patients and nor-

mal control;
• Leukemia: Gene expression data from acute lymphoblastic leuke-

mia (ALL) patients and normal control;
• ALLAML: Gene expression data from acute lymphoblastic leuke-

mia (ALL) patients and acute myeloid leukemia (AML) patients;
• GLI_85: Gene expression data from glioma tumor patients and

normal control;
• Prostate_GE: Gene expression data from prostate cancer patients

and normal control;
• SMK_CAN_187: Gene expression data from smokers with lung

cancer and smokers without lung cancer.

Table 2 Statistics of the real-world datasets.a

Dataset Colon Leukemia ALLAML GLI_85 Prost._GE SMK._187

No. of samples 62 (40, 22) 72 (47, 25) 72 (47, 25) 85 (26, 59) 102 (50, 52) 187 (90, 97)

No. of features 2000 7070 7129 22 283 5966 19 993

No. of classes 2 2 2 2 2 2

aThe numbers of case and control samples are shown in parentheses.

Figure 3 Real-world datasets. Average test AUROC with respect to the number of selected features for each dataset. Error bars indicate standard error mean, and red stars indi-

cate statistical significance compared to the second-best method (P-value < .05, one-sample paired t-test on the total 400 AUROC scores)
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The statistics of the datasets are shown in Table 2.
We randomly split each dataset into 20% training, 50% valid-

ation, and 30% testing with 20 replicates. We chose a such low-
training size is that a high-training size would result in an extremely
high performance for every method (which can be seen in the DNP
paper; Liu et al. 2017). We performed grid search for finding the op-
timal key hyperparameters for each method. We reported the average
test AUROC (over 20 times train test splits) with respect to the num-
ber of selected features from 1 to 20. The results are shown in Fig. 3,
where GRACES outperforms the other methods for all the datasets
except SMK_CAN_187. In particular, on the Colon, Leukemia,
GLI_85, and Prostate_GE datasets, the advantage of GRACES can
be shown with statistical significance compared to the second-best
method (P-value < .05, one-sample paired t-test on the total 400
AUROC scores). Moreover, the performance of GRACES is stable
and robust across all the datasets, while the other methods (such as
LR Lasso, HSIC Lasso, and DNP) would fail on certain datasets (e.g.
LR Lasso on ALLAML; HSIC Lasso on Colon; DNP on GLI_85), see
Table 3 and Fig. 4. By combining all the AUROC scores obtained
from the six datasets, the overall performance of GRACES is signifi-
cantly better than these of all the other methods (p-value < 10�9,
one-sample paired t-test on the total 2400 AUROC scores).
Surprisingly, the ANOVA F-test achieves a relative good and stable
performance on the real-world datasets. RF and CancelOut, which
are not suitable for HDLSS data, do not perform well. We further
repeated the experiment with MLP and k-nearest neighbors as the
final classifiers and observed a similar result, where GRACES
achieves a comparable or improved performance over the baselines
on the six biological datasets (Supplementary Figs S1 and S2).

5 Discussion

Both the synthetic and real-world datasets demonstrate compelling
evidence that GRACES can achieve a superb and stable performance
on HDLSS datasets. Notably, the two new overfitting-reducing tech-
niques, i.e. introduction of Gaussian noises and F-correction, play
critical roles in GRACES. We performed an ablation study to dem-
onstrate the effectiveness of the two overfitting-reducing techniques.
We tested the former on the same synthetic dataset with the hard
mode and the latter on the Colon dataset, respectively. The results are
shown in Fig. 5, where the performance of GRACES significantly
deteriorates without introducing Gaussian noises (left) or F-correction
(right). Nevertheless, even without using the two overfitting-reducing
techniques, GRACES is still slightly better than the second-best
method DNP in both the cases.

Next, we discuss two drawbacks of GRACES. First, according to
the experiment on the synthetic datasets, although GRACES outper-
forms the other baseline methods, its performance also declines
when the two classes are mixed intricately (i.e. the variable
class_sep becomes small). Hence, GRACES might fail on data
with highly nonlinear relations between features and labels. Second,
GRACES is computationally inefficient. We computed the total
computational time of each method for running the six biological
datasets with selected features from 1 to 10, see Table 4. The
ANOVA F-test is the most computationally efficient method among
the seven methods. On the other hand, GRACES requires more com-
putation resources in finding the optimal features due to its complex
architecture. When the number of samples is small (e.g. Colon,
Leukemia, ALLAML), the computational time of GRACES is still
reasonable. However, when the number of samples becomes large
(e.g. SMK_CAN_187), the computational time increases drastically.
Therefore, GRACES is only applicable for HDLSS data and cannot
handle normal feature selection tasks with large-sample sizes.

6 Conclusion

In this article, we proposed a deep learning-based method GRACES
to perform feature selection on HDLSS data. By utilizing GCN
along with different overfitting-reducing strategies including mul-
tiple dropouts, introduction of Gaussian noises, and F-correction,
GRACES achieves a superior performance on both the synthetic and
real-world HDLSS datasets compared to other classical feature se-
lection methods. GRACES can be applied to many other types of
biological datasets that suffer from the HDLSS problem. It will be
useful to investigate more sophisticated network architecture to
learn the low-dimensional representations of data. For example,
hypergraph convolutional network (Feng et al. 2019; Bai et al.
2021; Chen and Liu 2022), generalized from GCN, is able to exploit
higher-order associations among samples, which might result in a
more accurate representation for each sample. Further, more
overfitting-reducing techniques such as normalization can be
considered.

Supplementary data

Supplementary data are available at Bioinformatics online.

Table 3 Overall AUROC mean and rankings of the feature selection methods.a

Dataset Colon Leukemia ALLAML GLI_85 Prost._GE SMK._187

F-test 0.7385 (3) 0.9303 (2) 0.8830 (3) 0.7982 (2) 0.9043 (2) 0.6771 (3)

LR Lasso 0.7308 (4) 0.9218 (5) 0.8249 (4) 0.7778 (4) 0.8997 (4) 0.6824 (1)

HSIC Lasso 0.6739 (6) 0.9293 (3) 0.8951 (2) 0.7954 (3) 0.9003 (3) 0.6786 (2)

RF 0.6658 (7) 0.8060 (7) 0.7818 (6) 0.6875 (5) 0.8188 (7) 0.5899 (6)

CancelOut 0.6782 (5) 0.8098 (6) 0.6916 (7) 0.5989 (6) 0.8215 (6) 0.5288 (7)

DNP 0.7474 (2) 0.9234 (4) 0.8173 (5) 0.5740 (7) 0.8594 (5) 0.6454 (5)

GRACES 0.7591 (1) 0.9411 (1) 0.9025 (1) 0.8089 (1) 0.9191 (1) 0.6644 (4)

aWe ranked these methods based on the overall AUROC mean. The results for GRACES were highlighted in bold.

Figure 4 Boxplot of overall AUROC mean ranking over the six datasets for all the

feature selection methods. For each dataset, the ranking of a method was deter-

mined by the mean of the total 400 AUROC scores as shown in Table 3
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