
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

A Survey on Hyperlink Prediction
Can Chen and Yang-Yu Liu

Abstract— As a natural extension of link prediction on graphs,
hyperlink prediction aims for the inference of missing hyperlinks
in hypergraphs, where a hyperlink can connect more than two
nodes. Hyperlink prediction has applications in a wide range
of systems, from chemical reaction networks and social com-
munication networks to protein–protein interaction networks.
In this article, we provide a systematic and comprehensive
survey on hyperlink prediction. We adopt a classical taxonomy
from link prediction to classify the existing hyperlink prediction
methods into four categories: similarity-based, probability-based,
matrix optimization-based, and deep learning-based methods.
To compare the performance of methods from different cate-
gories, we perform a benchmark study on various hypergraph
applications using representative methods from each category.
Notably, deep learning-based methods prevail over other methods
in hyperlink prediction.

Index Terms— Deep learning, graph convolutional networks
(GCNs), hypergraph learning, hypergraphs, hyperlink prediction.

NOMENCLATURE
Notation Definition
H Hypergraph.
Hd Dual hypergraph.
V Node set.
E Hyperlink set.
H Incidence matrix.
di Degree of node vi .
cp Cardinality of hyperlink ep.
D Node degree matrix.
C Cardinality degree matrix.
N (vi) Neighbor set of node vi .
A Adjacency matrix.
S Pairwise distance matrix.
L Normalized Laplacian matrix.
W Hyperlink weight matrix.
L Normalized Laplacian tensor.
P Intersection profile matrix.
U Incidence matrix of candidate

hyperlinks.
∥∥F Frobenius norm.

Manuscript received 6 July 2022; revised 14 December 2022 and 3 April
2023; accepted 12 June 2023. This work was supported by the National
Institutes of Health under Grant R01AI141529, Grant R01HD093761, Grant
RF1AG067744, Grant UH3OD023268, Grant U19AI095219, and Grant
U01HL089856. (Corresponding authors: Can Chen; Yang-Yu Liu.)

Can Chen is with the Channing Division of Network Medicine, Depart-
ment of Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA 02115 USA (e-mail: spcch@channing.harvard.edu;
canc@umich.edu).

Yang-Yu Liu is with the Channing Division of Network Medicine, Depart-
ment of Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115 USA, and also with the Center for Artificial Intelligence
and Modeling, The Carl R. Woese Institute for Genomic Biology, Univer-
sity of Illinois at Urbana-Champaign, Champaign, IL 61801 USA (e-mail:
yyl@channing.harvard.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3286280.

Digital Object Identifier 10.1109/TNNLS.2023.3286280

σ Nonlinear activation function.
|| Vector concatenation.
Tr Matrix trace.
diag Matrix diagonal.

I. INTRODUCTION

MANY real-world systems, be they of biological,
social, or technological in nature, can be modeled and

analyzed as graphs, where each link (directed or undirected,
signed or unsigned, and weighted or unweighted) connects two
nodes, representing a certain pairwise interaction, association,
or physical connection between the two nodes [1], [2],
[3], [4], [5], [6]. For many networked systems (especially
biological systems), the discovery and validation of links
require significant experimental efforts. Not a big surprise,
many real-world networks mapped so far are substantially
incomplete. Inferring missing links based on the currently
observed network is known as link prediction, which has
tremendous real-world applications in biomedicine [7], [8],
e-commerce [9], [10], social media [11], [12], [13], and
criminal intelligence [14], [15].

Numerous tools have been developed for predicting or
discovering missing or hidden pairwise interactions (links)
in graphs [9], [16], [17], [18]. Traditional methods include
similarity-based methods according to common neighbors
(CNs) [19], Jaccard index [20], and Katz index (KI) [21].
In addition, advanced deep learning-based methods, including
deep generative models [7] and graph convolutional networks
(GCNs) [22], were introduced to tackle the problem. In par-
ticular, GCN, which exploits the graph structure to construct
neural networks, impressively improves the performance of
node/edge classification on graphs compared with traditional
neural networks [23], [24], [25].

However, most real-world data representations are mul-
tidimensional (e.g., coauthorship often involving more than
two authors; metabolic reactions often involving more than
two metabolites, and so on). Using graph models to describe
them might result in a loss of higher order topologi-
cal features [26], [27], [28], [29]. Hypergraphs, a natural
generalization of graphs, are superior in modeling the cor-
relation of practical data that could be far more complex
than pairwise patterns [30]. A hypergraph is composed of
hyperlinks (also called hyperedges), which can join any num-
ber of nodes. Hypergraphs can represent multidimensional
relationship unambiguously [26], [31]. Examples of hyper-
graphs include e-mail communication networks (Fig. 1) [26],
metabolic networks [32], [33], coauthorship networks [26],
actor/actress networks [26], genomic networks [34], [35], and
protein–protein interaction networks [36].

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2310-0074
https://orcid.org/0000-0003-2728-4907

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. E-mail communication networks (adapted from [26]). (a) Schematic
representation of an e-mail communication network, where the three solid
lines represent the known e-mails, while the orange dashed line represents the
missing e-mail (we ignore the directionality). (b) Hypergraph representation
of the e-mail communication network, where each hyperlink captures the
sender and the recipients in the associating e-mail. (c) Incidence matrix of
the hypergraph encoded by logical values to indicate the presence or absence
of any person in any e-mail.

The completeness of such large-scale hypergraphs has
remained a challenging problem. For instance, even highly
curated genome-scale metabolic models have missing reac-
tions due to our imperfect knowledge of metabolic pro-
cesses [37]. Teasing out missing reactions in genome-scale
metabolic networks can advance various industrial and
biomedicine fields, including metabolic engineering [38], [39],
microbial ecology [40], and drug discovery [41]. In addition,
predicting potential hyperlinks in hypergraphs has significant
implications for many real-world applications. For example,
hyperlink prediction can be used to identify groups of peo-
ple in social networks who share common interests, values,
or behaviors, enabling marketers or advertisers to target their
messages more effectively to make better recommendations to
their users [42], [43]. Hyperlink prediction can also be used
to identify groups of genes that work together to perform spe-
cific biological functions, aiding researchers in understanding
the mechanisms of diseases or developing new drugs [44],
[45]. Therefore, the development of well-performing meth-
ods to recover or predict hyperlinks in hypergraph is
imperative.

Hyperlink prediction is an extension of link prediction,
which has a broader range of applications than its prede-
cessor. The goal of hyperlink prediction is to recover the
most likely existent hyperlinks missing from the original
hypergraph. Unlike link prediction, which only deals with
pairwise relations, hyperlink prediction is required to find
missing hyperlinks with variable cardinality, which signif-
icantly increases the difficulty of the problem. Hyperlink
prediction methods rely on hypergraph-based features, such
as node degree, hyperlink cardinality, and intersection sets
between hyperlinks that are distinct from those used in link

prediction. Thus, naive generalizations from the link predic-
tion methods often result in a poor performance due to the
unique characteristics of hyperlinks [32]. Many efforts have
been made in exploring new hyperlink prediction methods.
Nevertheless, there is no comprehensive survey on hyperlink
prediction methods.

In this article, we provide a systematic and inclusive lit-
erature review of hyperlink prediction methods. We first
introduce some preliminary knowledge of hypergraphs and
formulate the hyperlink prediction problem in Section II.
We then adopt a classical taxonomy from link prediction
to classify the existing hyperlink prediction methods into
four categories, as shown in Section III. For each method,
we briefly summarize its workflow and discuss its pros
and cons. Furthermore, we conduct a benchmark study of
representative methods selected from each category on multi-
ple hypergraph applications, including e-mail communication,
school contact, congress bill, drug class, and metabolic net-
works in Section IV. The numerical results highlight the
effectiveness of the selected methods on various types of
hypergraph applications, which will be useful for future hyper-
link prediction tasks. Finally, we discuss potential directions
for future research and conclude in Section V. For the ease of
reading, we provide a notation table, which includes the most
notations used in the article (Nomenclature).

II. PRELIMINARIES

We briefly review some fundamental concepts of hyper-
graphs based on the work of [27], [28], [30], [31], [46],
and [47]. A hypergraph is a generalization of graphs in
which its hyperlinks (also called hyperedges) can join any
number of nodes. Mathematically, an unweighted hypergraph
H = {V, E}, where V = {v1, v2, . . . , vn} is the node set and
E = {e1, e2, . . . , em} is the hyperlink set with ep ⊆ V for
p = 1, 2, . . . , m. Two nodes are called adjacent if they are in
the same hyperlink. A hypergraph is called connected if, given
any two nodes, there is always a path connecting them through
hyperlinks. If all hyperlinks contain the same number of nodes,
H is call a k-uniform hypergraph [Fig. 2(b)]. So, a graph is
a just two-uniform hypergraph. Uniform hypergraphs can be
naturally and efficiently represented by tensors, i.e., multidi-
mensional arrays [48], [49], [50].

An incidence matrix of a hypergraph, denoted by H ∈

Rn×m , consists of logical values, which indicates the rela-
tionship between nodes and hyperlinks [Fig. 1(c)]. If a node
vi is involved in a hyperlink ep, then the (i, p)th entry of
H, i.e., Hi p, has value one. If not, it is equal to zero. The
degree of a node is the number of hyperlinks containing that
node, which can be computed as di =

∑
p Hi p. We denote the

diagonal node degree matrix of a hypergraph by D ∈ Rn×n .
Similarly, the cardinality of a hyperlink is the number of
nodes contained in that hyperlink, which can be computed as
cp =

∑
i Hi p. We denote the diagonal hyperlink cardinality

matrix of a hypergraph by C ∈ Rm×m .
The goal of hyperlink prediction is to find the most likely

existent hyperlinks missing from the observed hyperlink set E .
Mathematically, for a given potential hyperlink e, most hyper-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LIU: SURVEY ON HYPERLINK PREDICTION 3

TABLE I
SUMMARY OF HYPERLINK PREDICTION METHODS. METHODS MARKED IN BOLD WERE USED FOR BENCHMARK EVALUATIONS IN SECTION IV.

*: ORIGINAL PACKAGE FOR INDIRECT METHODS (WHICH HAVE NOT BEEN REFORMULATED FOR HYPERLINK PREDICTION). N.A.: NOT
APPLICABLE. R.A.: REQUESTED FROM AUTHORS

Fig. 2. Hypergraphs. (a) Nonuniform hypergraph with hyperlinks
e1 = {v1, v2}, e2 = {v2, v3, v4, v5}, and e3 = {v3, v5, v6}. (b) Uniform
hypergraph with hyperlinks e1 = {v1, v2, v5}, e2 = {v2, v3, v4}, and
e3 = {v3, v5, v6}.

link prediction methods aim to learn a function 9, such that

9 (e) =

{
≥ϵ, if e ∈ E
<ϵ, if e /∈ E

(1)

where ϵ is a threshold to binarize the continuous value
of 9 into a label [62]. In this article, we systematically
review hyperlink prediction methods based on four cat-
egories, namely, similarity-based, probability-based, matrix
optimization-based, and deep learning-based methods. In each
category, we further classify the methods into indirect and
direct methods. Indirect methods are those methods initially
developed for classification/clustering or other purposes, but

can be repurposed for hyperlink prediction. Direct methods
are the hypergraph learning methods specifically developed
for hyperlink prediction. We list all the hyperlink prediction
methods discussed in this article in Table I. Note that all the
listed methods can be found in the benchmark studies from
the hyperlink prediction literature. A schematic of each of the
four categories is presented in Fig. 3.

III. METHODS

In this section, we review the existing hyperlink prediction
methods, which can be grouped into the following four cate-
gories adopted from link prediction.

A. Similarity-Based Methods
We discuss four similarity-based methods for hyper-

link prediction. The first two (CN and KI) are indi-
rect methods adapted from link prediction, while the
last two [hyperlink prediction using resource allocation
(HPRA) and hyperlink prediction via hypergraph projec-
tion (HPHP)] are direct methods specifically designed
for hyperlink prediction. Similarity-based methods are
always readily to compute, but naive generalizations from
similarity-based link prediction methods often result in a poor
performance.

1) Common Neighbors: CN is a link prediction method that
is based on quantifying the local similarity of two nodes in a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Schematic workflow of the four categories of hyperlink prediction methods. (a) Similarity-based methods, which compute a similarity score for a
candidate hyperlink consisting of multiple nodes. (b) Probability-based methods, which utilize probability theory techniques to estimate the likelihood of the
existence of a hyperlink. (c) Matrix optimization-based methods, which exploit different hypergraph matrices to formulate matrix optimization problems for
hyperlink prediction. (d) Deep learning-based methods, which use graph/hypergraph-based neural networks to predict missing hyperlinks.

Fig. 4. Hypergraph expansion. (a) Original hypergraph. (b) Clique expansion of the hypergraph. (c) Star expansion of the hypergraph (also called the bipartite
graph). (d) Line graph of the hypergraph.

graph [19]. The similarity index between two nodes vi and v j
is given by

CNi j =
∣∣N (vi) ∩N

(
v j
)∣∣ (2)

where N (vi) denotes the set of neighbors of node vi . CN can
be generalized to hyperlinks by calculating the average of
the pairwise CN indices between the nodes within each
hyperlink [32], [51], [57]; i.e., given a hyperlink ep, the CN
index of ep is given by

CNp =
2

cp
(
cp − 1

) ∑
vi ,v j ∈ep

CNi j . (3)

Similar to link prediction for graphs, CN is not accurate
enough to reveal the similarities among nodes for relatively
sparse hypergraphs [72].

2) Katz Index: KI is a global similarity measure used for
link prediction (different from CN, which is based on local
topological features) [21]. It is based on a weighted sum over
the collection of all paths connecting nodes vi and v j , i.e.,

KIi j =

∞∑
l=1

βl
(

Al
g

)
i j

=

[(
I − βAg

)−1
− I

]
i j

(4)

where β is a damping factor that gives the shorter paths more
weights, Ag is the adjacency matrix of the target graph, and I
is the identity matrix [21]. KI can be generalized to hyperlinks
in the same manner as CN by replacing the graph adjacency
matrix Ag with the hypergraph adjacency matrix [32], [51].
The adjacency matrix of a hypergraph is often defined as A =

HH⊤
−D ∈ Rn×n , which is equivalent to the adjacency matrix

of the clique-expanded graph [Fig. 4(b)]. KI is not suitable

for large hypergraphs due to the usage of entire topological
information [which can be reflected by the matrix computation
in (4)].

Other classical graph similarity measures (either local or
global), such as Jaccard coefficient (JC) [20], Adamic–Adar
(AA) index [73], preferential attachment index [74], Sorensen
index [75], random walk with restart [76], and shortest
path [77], in principle, can also be used for hyperlink pre-
diction in a similar manner as CN and KI.

3) Hyperlink Prediction Using Resource Allocation: HPRA
is a recently developed direct hyperlink prediction method
working on the principles of the resource allocation pro-
cess [51]. Similar to CN, HPRA computes a hypergraph
resource allocation (HRA) index between two nodes based
on local attributes, i.e., direct connection and CNs. Define
the direct connection score between node vi and node v j as
follows:

SDi j =

∑
ep∋vi ,v j

i ̸= j

1
cp − 1

. (5)

Then, HRA index between the two nodes is given by

HRAi j = SDi j +

∑
vl∈N (vi)∩N (v j)

SDil × SDl j

dl
. (6)

Similar to CN and KI, the HRA index of a candidate hyperlink
can be computed as the average of all the pairwise HRA
indices between the nodes within the hyperlink. Moreover,
HPRA can predict missing hyperlinks on a hypergraph without
knowing any candidate hyperlinks; see details in [51]. Differ-
ent from those naive generalizations, HPRA exploits higher

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LIU: SURVEY ON HYPERLINK PREDICTION 5

order topological information and is able to achieve a good
performance on relatively dense hypergraphs while keeping
very low computational costs.

4) Hyperlink Prediction via Hypergraph Projection: HPHP
is a direct hyperlink prediction method, which exploits three
local similarity measures on projected graphs [52]. The
q-projected graph G(q)

= {V(q), E (q)
} (2 ≤ q ≤ maxp |ep|)

of a hypergraph H = {V, E} is defined as follows:

V(q)
=

{
v

(q)
i ⊆ V :

∣∣v(q)
∣∣ = q − 1

}
E (q)

=

{(
v

(n)
i , v

(n)
j

)
:

∣∣∣v(q)
i ∪ v

(q)
j

∣∣∣ = q

and ∃ep ∈ E s.t. v
(q)
i ∩ v

(q)
j ⊆ ep

}
. (7)

The q-projected graph encodes qth-order structural features
of the original hypergraph. Given a hyperlink ep, three sim-
ilarity measures—CN, JC, and AA—are considered on the
q-projected graph, i.e.,

CNp =

∣∣∣ ∩
v

(q)
i ⊆ep

N
(
v

(q)
i

) ∣∣∣
JCp =

CNp∣∣∣ ∪
v

(q)
i ⊆ep

N
(
v

(q)
i

) ∣∣∣
AAp =

∑
v

(q)
j ∈∩

v
(q)
i ⊆ep

N
(
v

(q)
i

)
1

log
∣∣∣N (

v
(q)
j

)∣∣∣ (8)

where N (v
(q)
i) denotes the set of neighbors of node v

(q)
i .

Finally, HPHP incrementally concatenates the three similarity
scores for q = 2, 3, . . . , l (l ≤ maxp |ep|) to obtain a
hyperlink feature vector (which will be used for hyperlink
prediction with any classifier). In fact, l can be small enough
to achieve comparable accuracy with near perfect approxima-
tions. Note that three additional structural features (geometric
mean, harmonic mean, and arithmetic mean of edge weights
on the q-projected graph) are incorporated if dealing with
weighted hypergraphs in [52]. HPHP successfully captures
higher order topological attributes encoded in its projected
graphs. However, similar to CN, the method would easily fail
on relatively sparse hypergraphs.

B. Probability-Based Methods

We consider three existing probability-based methods for
hyperlink prediction. The first two [Node2Vec and Bayesian
set (BS)] are indirect methods, while the last one [hyper-
link prediction using latent social feature (HPLSF)] is a
direct method. Notably, HPLSF is the first machine learning
method developed for hyperlink prediction [55]. Overall, the
probability-based methods often cannot make full use of the
structural features of hypergraphs, so the performance of this
category is limited.

1) Node2Vec: Node2Vec is a random walk-based method
that learns a mapping of nodes to a low-dimensional space of
features that maximizes the likelihood of preserving network
neighborhoods of nodes [53]. Let f : V → Rr be the mapping
function from nodes to feature representations, where r is the
dimension of the representations (a hyperparameter chosen by
users). Define NS(vi) ⊂ V as a network neighborhood of

node vi generated through a neighborhood sampling strategy
S. Node2Vec maximizes the log probability of observing a
network neighborhood NS(vi) for node vi conditioned on its
feature representation, i.e.,

max
f

∑
vi ∈V

log

 ∏
v j ∈N (vi)

Pr
(
v j | f (vi)

) (9)

where the conditional probability of every source-
neighborhood node pair is defined as follows:

Pr
(
v j
∣∣ f (vi)

)
=

exp
(

f
(
v j
)⊤ f (vi)

)
∑

vl∈V exp
(

f (vl)
⊤ f (vi)

) .
The optimization problem (9) can be solved by stochastic
gradient ascent over the model parameters defining the features
f . In addition, Node2Vec exploits a flexible biased random
walk procedure to explore neighborhoods in a breadth-first
sampling as well as depth-first sampling fashion.

Node2Vec can be applied for hyperlink prediction indi-
rectly [33]. Given an incomplete hypergraph H, decompose
the hypergraph into a graph by clique expansion [Fig. 4(b)]
and apply Node2Vec on the expanded graph. Suppose that the
embedding of node vi is xi ∈ Rr . Given an unseen hyperlink
ep, the hyperlink score can be computed as follows:

Sp = sigmoid

 1
cp

∑
vi ,v j ∈ep

i ̸= j

x⊤

i x j

 (10)

which produces a probabilistic metric that measures the
average of the correlations between the nodes within ep.
The final score Sp, therefore, can be used to indicate the
existence confidence of ep. Other node embedding meth-
ods, such as DeepWalk [78] and large-scale information
network embedding (LINE) [79], can also be used similarly.
Node2Vec is a simple and classic method, which can be
used for hyperlink prediction, but its performance is poor.
Decomposing a hypergraph into a graph could lose higher
order structural information. In addition, Node2Vec is com-
putationally expensive for large dense graphs, so it is not
applicable for hyperlink prediction on large dense hypergraphs.
Nevertheless, Node2Vec plays an important role in many
deep learning-based approaches as the step of embedding
initialization.

2) Bayesian Set: BS is a probability-based approach for
retrieving items from a cluster, given a query consisting
of a few items from that cluster, as a Bayesian inference
problem [54]. The method utilizes a model-based concept
of a cluster and ranks items using a score, which evaluates
the marginal probability that each item belongs to a cluster
containing the query items. Let D be a data set of items and
Dc be a query set with Dc ⊂ D. Having observed Dc, the
score for an item x ∈ D belonging Dc is given by

S (x) =
p (x |Dc)

p (x)
=

p (x, Dc)

p (x) p (Dc)
. (11)

The numerator represents the probability that x and Dc are
generated by the same model with the same parameters, while

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the denominator represents the probability that x and Dc came
from models with different parameters. BS has been used in
the setting of hyperlink prediction, where Dc and D can be
viewed as known hyperlink set and all candidate hyperlink
set, respectively [32]. However, since BS is an information
retrieval method that only retrieves similar items, it does not
perform well on hyperlink prediction tasks [32].

3) Hyperlink Prediction Using Latent Social Features:
HPLSF is the first hyperlink prediction method in the hyper-
graph learning community, which exploits the homophily
property of social networks and introduces a latent feature
learning scheme [55]. HPLSF can be categorized as either
probability-based or matrix optimization-based. We here treat
it as a probability-based method due to the novelty of uti-
lizing entropy in computing hyperlink embeddings. Given an
incomplete hypergraph H with n nodes, denote S ∈ Rn×n as
the distance matrix of H (i.e., Si j is the length of the shortest
path from node vi to node v j). HPLSF first finds the latent
features through multidimensional scaling (MDS), i.e.,

min
Z

∥∥S − ZZ⊤
∥∥

F (12)

where Z ∈ Rn×k is the latent feature matrix. Subsequently,
HPLSF computes an entropy-based embedding for each
hyperlink based on the latent node features (similar to an
entropy-based pooling function). Given a hyperlink ep, the
entropy-based embedding of ep is then given by

yp =

[
γ
(

Z(p)
:1

)
γ
(

Z(p)
:2

)
· · · γ

(
Z(p)

:k

)]
∈ Rk (13)

where Z(p)
∈ Rcp×k is the latent feature matrix for the nodes

contained in ep (Z(p)
: j represents the j th column of Z(p)) and

γ computes the Shannon entropy of a vector, i.e., for j =

1, 2, . . . , k

γ
(

Z(p)
: j

)
= −

cp∑
i=1

Z(p)
i j∑cp

l=1 Z(p)
l j

log2
Z(p)

i j∑cp
l=1 Z(p)

l j

. (14)

If the observed node feature matrix is also provided, HPLSF
will repeat the same entropy calculation to obtain another
entropy-based embedding of ep. Finally, HPLSF trains a struc-
tural support vector machine model with combined observed
and latent hyperlink embeddings to perform hyperlink
prediction.

Zhang et al. [32] modified HPLSF by training a logis-
tic regression model on the latent entropy-based hyperlink
embeddings in order to output prediction scores. HPLSF
only considers the pairwise distances between nodes when
generating latent node features without including any higher
order topological attributes. Thus, more advanced techniques,
which can fully exploit hypergraph structure, are required for
improving the performance of hyperlink prediction.

C. Matrix Optimization-Based Methods

We investigate several matrix optimization-based hyper-
link prediction methods. The first two [factorization machine
(FM) and spectral hypergraph clustering (SHC)] are indirect
methods, while the remaining [hyperlink prediction using ten-
sor eigenvalue decomposition (HPTED), hyperlink prediction

via loop structure (HPLS), matrix boost (MB), coordinated
matrix minimization (CMM), and clique closure-based CMM
(C3MM)] are direct methods. The essence of these methods
is to exploit the incidence, adjacency, or Laplacian matrices
(or Laplacian tensors) of hypergraphs to formulate matrix
optimization problems for hyperlink prediction.

1) Factorization Machine: FM integrates the generality
of feature engineering with the superiority of factorization
models in estimating interactions between variables of large
domain [56]. Suppose that the input feature variable is x ∈ Rr .
The FM model of order 2 is defined as follows:

y (x) = w0 +

r∑
i=1

wi xi +

r∑
i=1

r∑
j=i+1

xi x j

k∑
f =1

si f s j f (15)

where 2 = {w0, w1, . . . , wr , s11, . . . , srk} is the set of model
parameters and xi denotes the i th entry of x. The first two
terms of the FM model contain the unary interactions of each
input variable xi with the target, which is equivalent to the
linear regression model. The last term with the two nested
sums contains all pairwise interactions of the input variables.
Optimality of the model parameters is defined with a loss
function (e.g., least-square or cross-entropy loss) where the
goal is to minimize the sum of losses over the observed data.
Given an incomplete hypergraph H, FM treats hyperlink
prediction as a simple classification problem by fitting (15)
with the incidence matrix of H [32]. Although the incidence
matrix of a hypergraph encoded with higher order relations, the
performance of FM is poor due to its simple learning scheme.

2) Spectral Hypergraph Clustering: SHC is the first
semisupervised hypergraph learning method developed for
label prediction on hypergraphs [46]. SHC aims to learn a
partition in which the connections among the nodes within
the same part are dense, while the connections between two
parts are sparse. SHC generalizes the powerful methodology
of spectral clustering, which originally operates on graphs to
hypergraphs. Given a hypergraph H with n nodes, let f ∈ Rn

be the classification function and y ∈ Rn be the label vector
consisting of values of 0, 0.5, and 1, where 0.5 indicates
those unlabeled nodes. The whole SHC learning model can
be defined as follows:

min
f

∥f − y∥
2
F + µf⊤Lf (16)

where µ > 0 is the regularization parameter and L is the
normalized Laplacian matrix of the hypergraph defined by

L = I − D−
1
2 HWC−1H⊤D−

1
2 ∈ Rn×n . (17)

Here, I ∈ Rn×n is the identity matrix, and W ∈ Rm×m

is a diagonal matrix of hyperlink weights (W = I if H is
unweighted). The normalized Laplacian matrix L, in fact,
can be viewed as the normalized Laplacian matrix of the
clique-expanded graph with edge weights scaled by the asso-
ciated hyperlink cardinality. The hypergraph regularizer f⊤Lf
implies that the state of a node is more affected by its
neighborhoods with closer and stronger connections than those
remote nodes. The optimization problem (16) can be solved
in a closed form, i.e.,

f = (I − µL)−1 y. (18)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LIU: SURVEY ON HYPERLINK PREDICTION 7

SHC can be used to predict missing hyperlinks by trans-
forming the target hypergraph to its dual hypergraph [32],
[33], [51]. Given an incomplete hypergraph H with n nodes
and m hyperlinks, its dual hypergrpah, denoted by Hd , can
be simply obtained by switching the node and hyperlink
relations. The incidence matrix of Hd is then given by Hd =

H⊤
∈ Rm×n . In addition, more advanced hypergraph spectral

clustering methods, such as dynamic hypergraph structure
learning [80], tensor-based dynamic hypergraph structure
learning [30], hypergraph label propagation network [81],
and nonlinear diffusion method [82], can be applied for
hyperlink prediction with a similar manner. SHC has achieved
a reasonable performance in hyperlink prediction due to uti-
lization of hypergraph structure. However, SHC is a simple
method initially designed for node classification/clustering by
leveraging hyperlink relations. Converting a hypergraph to its
dual could still lead to a loss of structural features.

3) Hyperlink Prediction Using Tensor Eigenvalue Decom-
position: HPTED utilizes the Fiedler eigenvector, computed
using tensor eigenvalue decomposition of the hypergraph
Laplacian tensor, to conduct hyperlink prediction [57]. A ten-
sor is a multidimensional array generalized from vectors and
matrices. The order of a tensor is the number of its dimensions.
A k-uniform hypergraph H with n nodes can be naturally
represented by a kth-order supersymmetric tensor (invariant
under permutation of the indices) of size n in each dimension,

i.e., Rn×n×
k
···×n [27], [28]. The normalized Laplacian tensor

of H is defined by

Li1,i2,...,ik =

−Wpp

(k − 1)!
∏k

l=1
k
√

dil

, if i1, i2, . . . , ik ∈ ep

1, if i1 = i2 = · · · = ik

0, otherwise
(19)

where W is a diagonal matrix of hyperlink weights (if H is
unweighted, Wpp = 1) [47]. The Fiedler eigenvector is the
eigenvector corresponding to the minimum positive eigenvalue
(Fielder value) from the tensor eigenvalue decomposition of L,
which can be solved by matrix/tensor optimization. Details of
the optimization for solving tensor eigenvalues/eigenvectors
can be found in [57], [83], and [84]. After obtaining the
Fiedler eigenvector, HPTED computes a construction cost of
a potential hyperlink ep, i.e.,

lp (x) = Wpp

∑
il∈ep

xk
il −k

∏
il∈ep

xil

 (20)

where xil is the il th entry of the Fiedler eigenvector x ∈ Rn .
It has proved that the construction cost lp represents the
contribution of ep to the Fielder value of the hypergraph
Laplacian, which quantifies the connectivity of the hyper-
graph [85]. Therefore, a smaller construction cost indicates
higher existence confidence of ep. In other words, HPTED can
be viewed as the inclusion of new hyperlinks, such that there
is minimal perturbation to the connectivity of the hypergraph.

Although HPTED successfully keeps the higher order
structural features of a hypergraph using tensor theory, the

method is not applicable to nonuniform hypergraphs, and most
real-world hypergraphs are nonuniform. More importantly,
computing the tensor eigenvalues and eigenvectors of a tensor
is NP-hard [86]. Current computation schemes, such as [87],
would become intractable when dealing with large tensors.

4) Hyperlink Prediction via Loop Structure: The HPLS
exploits the loop features of a hypergraph to perform hyper-
link prediction [58]. HPLS can be categorized as either
probability-based or matrix optimization-based. We here treat
it as a matrix optimization-based approach due to the novelty
of using adjacency and intersection profile matrices in quanti-
fying hypergraph loop features. There are two types of loops
used in HPLS—node-based loops (walks that start and end at
the same node) and hyperlink-based loops (walks that start and
end at the same hyperlink). Given an incomplete hypergraphH
with n nodes and m hyperlinks, denote A = HH⊤

−D ∈ Rn×n

and P = H⊤H − C ∈ Rm×m as the adjacency matrix and
the intersection profile matrix of H, respectively. Then, the
weighted sum over loops with different lengths is defined as
follows:

SL (H) =

τc∑
τ=2

ατ log
(
Tr
(
Aτ
))

+

τc∑
τ=2

βτ log
(
Tr
(
Pτ
))

(21)

where ατ and βτ are the weight parameters, τc is the cutoff of
the loop length, and Tr(Aτ) and Tr(Pτ) are the total numbers
of node-based loops and hyperlink-based loops of length τ ,
respectively (Tr denotes the matrix trace operation). Given a
potential hyperlink ep, define two hypergraphs Hp+ = {V, E∪

{ep}} and Hp− = {V, E\{e}}. Let Sp be the probability of
existence for ep, and its log odds are assumed by

log
Sp

1 − Sp
= c +

1
cγ

p

(
SL
(
Hp+

)
− SL

(
Hp−

))
(22)

where c and γ are parameters to be determined. Finally, HPLS
maximizes the following likelihood for obtaining the optimal
parameter set {ατ , βτ , γ }:

max
ατ ,βτ ,γ

∏
ep∈E∪F

S
I(ep∈E)
p

(
1 − Sp

)1−I(ep∈E) (23)

where F is a negative hyperlink set and I is an indicator
function. HPLS has achieved a better performance compared
with previous methods, such as Katz, BS, and SHC. However,
it is not computationally efficient for large hypergraphs. The
matrix multiplication of A and P for τc −1 times is extremely
time-consuming.

5) Matrix Boost: The remaining three methods in this
category are a series of matrix optimization-based hyperlink
prediction methods. MB conducts inference jointly in the
incidence and adjacency space by performing an iterative
completion-matching optimization [59]. MB has been suc-
cessfully applied to predict missing reactions in genome-scale
metabolic networks [60]. Given an incomplete hypergraph H
with n nodes, denote A = HH⊤

∈ Rn×n as the adjacency
matrix of H (defined slightly different from that in HPLS
by including self-loops). Suppose that the complete adjacency
matrix is given by A + 1A, and it can be decomposed by

A + 1A = A + [1A]A + [1A]Ā (24)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

where [X]A denotes the operation that only keeps the entries
of X at A’s nonempty entries and mask all else, and [X]Ā is
conversely defined as keeping X only at A’s empty entries.
Define A + [1A]A = A+ and [1A]Ā = 1A−. MB first aims
to approximate the empty entries of A+, denoted by 1Â, with
known A+ (which can also be approximated iteratively). The
optimization problem is as follows:

min
2

∑
i< j

∥∥A+

i j − yi j
∥∥2

F + γR (2) (25)

where 2 = {w0, wi , w j , si f , s j f } is the set of parameters,
yi j = w0 + wi + w j +

∑k
f =1 si f s j f , and R is a regularizer.

After training, 1Â can be obtained by

1Âi j =

w0 + wi + w j +

∑
f

si f s j f , if A+
= 0

0, if A+
̸= 0.

(26)

Let U ∈ Rn×m̃ be the incidence matrix of the candidate
hyperlinks of H and 3 ∈ Rm̃×m̃ be a diagonal indicator matrix
of the candidate hyperlinks. In the matching step, MB solves
the optimization problem as follows:

min
3

∥∥∥ [U3U⊤

]
Ā

− 1Â
∥∥∥2

F

s.t. 3pp = {0, 1} for p = 1, 2, . . . , m̃. (27)

The optimization problem (27) can be relaxed by making the
integer 3pp continuous within [0, 1], which can be solved by
subgradient methods [88]. The continuous scores 3pp can be
viewed as soft indicators of the candidate hyperlinks.

MB leverages the powerful matrix factorization technique to
perform inference in the adjacency space in recovering missing
hyperlinks. Yet, it has limited scalability, since the candidate
hyperlink set must be present during training. If the candi-
date hyperlink set becomes extremely large (e.g., the entire
metabolic reactions in a metabolic model database, which
often contains more than 10 000 reactions [89]), the matrix
optimization will be difficult (or even impossible) to solve.
Moreover, MB cannot handle unseen hyperlinks at test time,
which limits the applications of the method.

6) Coordinated Matrix Minimization: CMM is an improved
version of MB, which introduces a latent factor matrix to
significantly simplify the method [32]. CMM alternatively
performs nonnegative matrix factorization and least square
matching in the adjacency space, in order to infer a subset of
candidate hyperlinks that are most suitable to fill the target
hypergraph. Similar to MB, denote A = HH⊤

∈ Rn×n

and U ∈ Rn×m̃ as the adjacency matrix of H and the
incidence matrix of the candidate hyperlinks, respectively. Let
a nonnegative matrix Q ∈ Rn×k be the latent factor matrix
(k ≪ n), and assume that the complete adjacency matrix of
the hypergraph is factorized by

A + U3U⊤
≈ QQ⊤ (28)

where 3 ∈ Rm̃×m̃ is a diagonal indicator matrix of can-
didate hyperlinks. To find the missing hyperlinks, CMM

solves the following optimization problem by using the
expectation–maximization algorithm:

min
3,Q≥0

∥∥A + U3U⊤
− QQ⊤

∥∥2
F

s.t. 3pp = {0, 1} for p = 1, 2, . . . , m̃. (29)

After relaxing the constraint of 3pp to be continuous within
[0, 1], the linear least square problem can be solved very
efficiently using off-the-shelf optimization tools, e.g., IBM
CPLEX [90]. Although CMM is simpler than MB with a better
performance, it still suffers from the issue of scalability and
cannot handle unseen hyperlinks.

7) Clique Closure-Based CMM: C3MM is an improved
version of CMM [61]. C3MM introduces a clique closure
hypothesis (i.e., hyperlinks are more likely to be formed
from near cliques rather than from noncliques) into the
objective function of CMM, which significantly hunts down
more hyperlinks, which are missed by CMM. C3MM first
approximates the latent factor matrix Q ∈ Rn×k (k ≪ n).
Given a diagonal indicator matrix 3U ∈ Rm̃×m̃ (which can be
initialized randomly), C3MM computes

min
W≥0

∥∥A + ACN + U3UU⊤
− QQ⊤

∥∥2
F (30)

where ACN = A2
− diag(A2) captures the CN information of

the projected graph (“diag” denotes the diagonal operation that
keeps the diagonal of a matrix with zero elsewhere). Define
1A = QQ⊤

− A. To find missing hyperlinks, C3MM solves
the second optimization problem as follows:

min
3U,3H

∥∥A − H3HH⊤
− U3UU⊤

∥∥2
F

+
∥∥1A − U3UU⊤

∥∥2
F + ∥3H∥1

s.t. (3U)pp = {0, 1} for p = 1, 2, . . . , m̃

(3H)pp = {0, 1} for p = 1, 2, . . . , m. (31)

The method solves the two optimization problems alternatively
for a certain number of iterations. C3MM has proved to
perform well on temporal hyperlink prediction tasks, compared
with CMM. However, C3MM has the same issues with MB
and CMM (i.e., scalability and inability of handling unseen
hyperlinks). Therefore, more sophisticated deep learning tech-
niques are needed in order to fix these issues.

D. Deep Learning-Based Methods

We explore the existing literature regarding deep
learning-based methods for hyperlink prediction. The first
six [Node2Vec with single-layer perceptron (Node2Vec-SLP),
Node2Vec with GCN (Node2Vec-GCN), Node2Vec with
GraphSAGE (Node2Vec-GraphSAGE), Node2Vec with relat-
ional GCN (Node2Vec-RGCN), Node2Vec with hypergraph
convolutional network (Node2Vec-HGCN), and Node2Vec-
HyperGCN) are indirect methods, while the last six [families
of sets (FamilySet), structural representation neural network
and local spectrum (SNALS), deep hypernetwork embedding
(DHNE), self attention-based GCN for hypergraphs
(HyperSAGCN), neural hyperlink predictor (NHP), and
Chebyshev spectral hyperlink predictor (CHESHIRE)]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LIU: SURVEY ON HYPERLINK PREDICTION 9

are direct methods. In particular, utilization of graph/
hypergraph-based neural networks significantly improves the
performance of hyperlink prediction.

1) Node2Vec With Single-Layer Perceptron: Node2Vec-SLP
is an improved version of Node2Vec for hyperlink prediction,
which employs a one-layer neural network to compute hyper-
link scores [33], [62]. Given an incomplete hypergraph H,
decompose the hypergraph into a graph by clique expansion
and apply Node2Vec on the expanded graph. Suppose that
the embedding of node vi is xi . Thus, the embedding of
hyperlink ep, denoted by yp, can be obtained by aggregating
all the embeddings of the nodes within the hyperlink through
a pooling function. Many pooling functions can be used, such
as maximum pooling, minimum pooling, and mean pooling.
The embedding of ep is further fed into a one-layer neural
network to produce a probabilistic score, i.e.,

Sp = sigmoid
(
Wscoreyp + bscore

)
(32)

where Wscore and bscore are learnable parameters in the neural
network. The final score Sp can be used to indicate the
existence confidence of ep. Node2Vec-SLP slightly improves
the performance of Node2Vec in terms of hyperlink prediction,
but it does not fundamentally solve the issues carried from
Node2Vec (i.e., losing higher order structural information).

2) Node2Vec With GCN: Node2Vec-GCN is an extension of
Node2Vec-SLP by introducing an embedding refinement step
before hyperlink pooling [33]. In particular, the embedding
refinement is defined by a GCN constructed based on the
clique expansion of H. Suppose that the embedding of node vi
is xi (generated by Node2Vec). Then, the refined embedding
of vi through a GCN layer is given by

x̂i = σ

Wconv1xi +

∑
v j ∈N (vi)

Wconv2x j

 (33)

where N (vi) denotes the neighbor set of node vi in the
expanded graph, σ is a nonlinear activation function, and
Wconv1 and Wconv2 are learnable parameters in the GCN [63].
The remaining steps of Nod2Vec-GCN follow Node2Vec-SLP.

3) Node2Vec With GraphSAGE: Node2Vec-GraphSAGE is
an alternative to Node2Vec-GCN by replacing the GCN layer
with a GraphSAGE layer [64]. The refined embedding of vi
through a GraphSAGE layer is given by

x̂i = σ

Wconv

xi

∣∣∣∣∣∣∣∣ 1∣∣N (vi)
∣∣ ∑

v j ∈N (vi)

x j

 (34)

where “||” denotes the vector concatenation operation and
Wconv is a learnable parameter in the GraphSAGE. Other
graph-based neural networks, such as [91], [92], [93], and
[94], can also be used for embedding refinement. How-
ever, both Node2Vec-GCN and Node2Vec-GraphSAGE use
the clique-expanded graph structure to refine node embed-
dings, which has the issue of losing higher order structural
information.

4) Node2Vec With Relational GCN: Instead of refining node
embeddings on the clique-expanded graph, Node2Vec-RGCN
exploits star expansion [Fig. 4(c)] with an RGCN for updating
node embeddings [64], [66]. RGCN was developed specifically

to deal with knowledge graphs where edges have different
types [67]. Suppose that the embedding of node vi is xi
(generated by Node2Vec). After obtaining the bipartite graph,
Node2Vec-RGCN updates the node embeddings as follows:

yp = σ

∑
vi ∈ep

Wconv1xi

x̂i = σ

∑
ep∋vi

Wconv2yp

 (35)

where Wconv1 and Wconv2 are learnable parameters in the
RGCN. The remaining steps of Node2Vec-RGCN follow
Node2Vec-SLP. Although the star expansion of a hyper-
graph somehow preserves higher order structural features,
Node2Vec-RGCN fails to capture node-to-node and hyperlink-
to-hyperlink interactions.

5) Node2Vec With HGCN: HGCN, a convolutional neural
network built directly on hypergraphs, is able to learn the
hidden layer representation considering the high-order data
structure [68]. Experiments have shown that the HGCN out-
performs graph-based neural networks on hypergraph data.
HGCN can be applied for hyperlink prediction indirectly,
similar to those graph-based neural networks [33], [64], [66].
Suppose that the embeddings of all the nodes of H are repre-
sented by X (generated by Node2Vec). Then, the embedding
refinement defined by a HGCN layer is given by

X̂ = σ (LXWconv) (36)

where L is the normalized Laplacian matrix of H defined in
(17) and Wconv is a learnable parameter in the HGCN. The
remaining steps of Node2Vec-HGCN follow Node2Vec-SLP.
As mentioned, L can be viewed as the normalized Laplacian
matrix of the clique-expanded graph with edge weights scaled
by the associated hyperlink cardinality. Thus, the improvement
of Node2Vec-HGCN is limited, compared with the previous
deep learning-based methods.

6) Node2Vec With HyperGCN: HyperGCN is an another
newly developed convolutional network on hypergraphs, which
has achieved a better performance compared with HGCN on
node classification [69]. The key of HyperGCN is to construct
a projected graph G while keeping the higher order topological
features from H. Suppose that the embedding of node vi is
xi (generated by Node2Vec). For each hyperlink ep, define
an edge between node vi ∈ ep and node v j ∈ ep, such
that (

vi , v j
)

= argmax
vi ,v j ∈ep

i ̸= j

∥∥Q
(
xi − x j

) ∥∥
F (37)

where Q is a learnable weight matrix. Subsequently, connect
the selected two nodes vi and v j with the remaining nodes
in ep and set the weight of each edge to (1/2cp − 3). After
obtaining G, Node2Vec-HyperGCN utilizes the GCN defined
in (33) for node embedding refinement [33]. The weight matrix
Q defined in (37) can be replaced by the weight matrix in
the GCN, i.e., Wconv2, for reducing the number parameters
when training HyperGCN. The remaining steps of Node2Vec-
HyperGCN follow Node2Vec-SLP.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Similar to Node2Vec-GCN, Node2Vec-GraphSAGE, and
Node2Vec-RGCN, other well-developed hypergraph-based
neural networks, such as [95], [96], [97], [98], [99], and [100],
can also be applied for the step of embedding refinement.
Node2Vec-HyperGCN has achieved reasonable performances
in hyperlink prediction, but it was initially developed for node
classification/clustering, which focus more on using hyperlink
relations to classify node labels.

7) Hypergraph Learning Over FamilySet: Hypergraph
learning over FamilySet is a direct hyperlink prediction
method, which can learn provably expressive representations
of hyperlinks with variable degrees that preserve local iso-
morphism in the line graph of the hypergraph [Fig. 4(d)] [64].
FamilySet uses a message passing framework on the incidence
graph representation of the incomplete hypergraph, which
synchronously updates the node and hyperlink embeddings.
Let xi and yp represent the embeddings of node vi and
hyperlink ep, respectively. Then, the updating rule is given
by

ŷp = σ
(
Wconv1

(
yp
∣∣∣∣ f

({
xi
∣∣∣∣t ({yp′

})})))
for vi ∈ ep and ep′ ∋ vi

x̂i = σ
(
Wconv2

(
xi
∣∣∣∣g ({yp

∣∣∣∣s ({xi ′})
})))

for vi ∈ ep and vi ′ ∈ ep (38)

where “||” denotes the vector concatenation operation; f, g, t ,
and s are injective set functions; and Wconv1 and Wconv2
are learnable parameters in the convolutional networks. One
may update the node and hyperlink embeddings for a certain
number of iterations. The final representation of hyperlink ep
is then given by

ˆ̂yp = φ
({

x̂i
}) ∣∣∣∣ρ ({ŷp′

})
for vi ∈ ep and ep′ ∋ vi

(39)

where φ and ρ are injective set and multiset functions, respec-
tively. In the end, FamilySet utilizes maximum likelihood
estimation to estimate a classifier using the final hyperlink
emebddings. Utilization of line graphs successfully enhances
the interactions between hyperlinks with its local environment,
which enables FamilySet to outperform the previous indirect
methods, such as Node2Vec-GraphSAGE, Node2Vec-RGCN,
and Node2Vec-HGCN.

8) Structural Representation Neural Network and Local
Spectrum: The SNALS is a hyperlink prediction method that
exploits bipartite GCN with structural features [Fig. 4(c)] [66].
Given a hyperlink ep, define its q-hop neighbor node set Vq ,
hyperlink set Eq , and affinity matrix Xq as follows:

Vq =
{
v j
∣∣η (vi , v j

)
≤ q for v j ∈ V and vi ∈ ep

}
Eq =

{
es
∣∣es ⊆ Vq and es ∈ E

}(
Xq
)

i j = η
(
vi , v j

∣∣vi ∈ Vq and v j ∈ ep
)

∈ R|Vq |×cp (40)

where η(vi , v j) denotes the shortest path distance between
nodes vi and v j . SNALS first integrates the affinity matrix
Xq using a bipartite GCN, i.e., generating and refining

embeddings of the nodes in Vq by

XVq = setNN
(
Xq
)

XEq = σ
(

C−1
q H⊤

q XVq Wconv1

)
X̂Vq = σ

(
HqXEq Wconv2

)
(41)

where setNN represents the set neural network for standard-
izing Xq into a feature matrix of a fixed dimension, Cq and
Hq are the cardinality matrix and the incidence matrix of the
q-hop hypergraph, respectively, and Wconv1 and Wconv2 are
learnable parameters in the bipartite GCN. One may update
the q-hop node and hyperlink embeddings for a certain number
of iterations. Then, the embedding of hyperlink ep, denoted
by yp, can be obtained by aggregating all the embeddings of
the nodes within the hyperlink through a pooling function.
In order to keep the structure of the affinity of Xq in
the representation of hyperlink ep, SNALS further utilizes
the top two singular values of Xq to reflect the low rank
property of the affinity matrix, i.e., the topological structure.
Finally, SNALS feeds the combined features (i.e., yp and
top two singular values) into a one-layer neural network to
produce a hyperlink score as (32). SNALS can capture the
joint interactions of a hyperlink by its local environment and
overcome the both node-level and hyperlink-level ambiguity
issues; see details in [66].

9) Deep Hypernetwork Embedding: DHNE is a deep
learning-based model that realizes a nonlinear tuple-wise
similarity function while preserving both local and global
proximities in the formed embedding space [70]. Given an
incomplete uniform hypergraph H with n nodes, DHNE
initializes the node embeddings of H through an autoencoder.
The encoder is a nonlinear mapping from the adjacency space
A = HH⊤

− D ∈ Rn×n to a latent representation space
X, and the decoder is a nonlinear mapping from the latent
representation X space back to the original adjacency space
Ã, i.e.,

X = σ (AWenc + benc)

Ã = σ (XWdec + bdec) (42)

where Ã is used to compute a reconstruction loss, and Wenc
and Wdec are learnable parameters in the autoencoder. Suppose
that the embedding of node vi is xi (i.e., the i th row of X),
DHNE computes a hyperlink score of a hyperlink ep through
a multilayer perceptron (MLP), i.e.,

yp = σ

Wlinear
∑
vi ∈ep

xi + blinear

Sp = sigmoid

(
Wscoreyp + bscore

)
(43)

where Wlinear, Wscore, blinear, and bscore are learnable param-
eters in the MLP.

DHNE directly models the tuple-wise relationship using an
MLP and achieves a better performance on multiple tasks as
compared with Node2Vec-SLP. However, the structure of the
MLP takes fixed-size inputs, making DHNE only applicable to
uniform hypergraphs. Moreover, using an MLP to refine node
embedding fails to capture node-level interactions within each
hyperlink.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LIU: SURVEY ON HYPERLINK PREDICTION 11

10) Self Attention-Based GCN for Hypergraphs: Self
attention-based GCN for hypergraphs (HyperSAGCN) gener-
alizes DHNE by exploiting an SAGCN in refining embeddings
of the nodes within each hyperlink [62]. The HyperSAGCN
offers two options in generating initial node embeddings. The
first option is using the autoencoder-based approach proposed
in DHNE, while the second option is using a hypergraph
random walk-based approach (see details in [62]). Suppose
that the embedding of node vi is xi (obtained from either the
two options). Given a hyperlink ep, HyperSAGCN incorpo-
rates two different ways (static and dynamic) to refine the
embeddings of the nodes within ep, i.e.,

si = σ (Wlinearxi) for vi ∈ ep

di = σ

 ∑
vi ,v j ∈ep

i ̸= j

αi j Wconvx j

 (44)

where the values of αi j are the attention coefficients defined
by

αi j =

exp
((

W⊤

i xi
)⊤ (W⊤

j x j

))
∑cp

k=1 exp
((

W⊤

i xi
)⊤ (W⊤

k xk
))

and Wlinear and Wconv are learnable parameters in the static
and dynamic neural networks, respectively. The embedding of
hyperlink ep through a mean pooling is then given by

yp =
1
cp

∑
vi ∈ep

(si − di)
⊗2 (45)

where the subscript “⊗2” denotes the element-wise square
power. The final hyperlink score is the same as (32).
HyperSAGCN is able to improve the performance of DHNE
while addressing the shortcomings, such as the inabil-
ity, to predict hyperlinks for nonuniform hypergraphs. Yet,
HyperSAGCN does not perform well on hypergraphs with
hyperlinks formed by dissimilar nodes, such as metabolic net-
works. The mean pooling function fails to accurately capture
the embedding of a hyperlink when the embeddings of its
involved nodes are drastically different.

11) Neural Hyperlink Predictor: The NHP is an improved
version of HyperSAGCN, where it employs a new maximum
minimum-based pooling function, which can adaptively learn
weights in a task-specific manner and include more prior
knowledge about the nodes [33]. Similar to those indirect
methods, NHP initializes node embedding by performing
Node2Vec on the clique-expanded graph. Suppose that the
embedding of node vi is xi . Given a hyperlink ep, NHP
treats it as a fully connected graph and refines the embed-
dings of the nodes within ep by a GCN defined in (33)
(while Node2Vec-GCN applies a GCN on the entire expanded
graphs). Then, NHP uses a maximum minimum-based pooling
function to compute hyperlink embeddings, i.e.,

ymaxmin
pl = max

vi ∈ep

{
x̂il
}

− min
vi ∈ep

{
x̂il
}

(46)

where ymaxmin
pl denotes the lth entry of ymaxmin

p and x̂il
denotes the lth entry of the refined embedding x̂i . The final

scoring function is the same as (32). The employment of
the maximum minimum-based pooling function enables NHP
to outperform the previous methods, such as Node2Vec-SLP,
Node2Vec-HGCN, Node2Vec-HyperGCN, and HyperSAGCN.
However, NHP does not perform well on relatively dense
hypergraphs, such as e-mail communication networks (due to
utilization of Node2Vec).

12) Chebyshev Spectral Hyperlink Predictor: The
CHESHIRE is a recent hyperlink prediction method built
upon HyperSAGCN and NHP [71]. CHESHIRE has
been successfully applied to predict missing reactions
in genome-scale metabolic networks, which significantly
improves the phenotype prediction of metabolic models.
Different from NHP and HyperSAGCN, CHESHIRE
initializes node embedding by simply passing the incidence
matrix H through a one-layer neural network, i.e.,

xi = σ (Wenchi + benc) (47)

where hi is the i th row of H, and Wenc and benc are
learnable parameters in the encoder. Node2Vec on the clique
expansion could lose higher order structural information and
require a great amount of computation resources, while the
adjacency matrix of a hypergraph is, in fact, equivalent to
the adjacency matrix of its clique expansion. Initialization
with the incidence matrix is able to preserve multidimensional
relationships while keeping low memory costs.

Suppose that the embedding of node vi is xi . Given a
hyperlink ep, CHESHIRE treats it as a fully connected graph
(as HyperSAGCN and NHP) and refines the embeddings of
the nodes within ep with a Chebyshev spectral GCN, i.e.,

x̂i = σ

(K∑
k=1

W(k)
convz(k)

i

)
for vi ∈ ep (48)

where K is the Chebyshev filter size and the values of z(k)
i

are computed recursively by

z(1)
i = xi , z(2)

i = L̃cxi , and z(k)
i = 2L̃cz(k−1)

i − z(k−2)
i

and the values of W(k)
conv are learnable parameters in the

Chebyshev spectral GCN. The matrix L̃c is the scaled nor-
malized Laplacian matrix of the fully connected graph defined
by

L̃c =
2

λmax
Lc − I =

2
λmax

(
I − D−

1
2

c AcD−
1
2

c

)
− I

where Lc is the symmetric normalized Laplacian matrix of
the graph with the largest eigenvalue λmax, and Dc and
Ac are the degree matrix and the adjacency matrix of the
graph, respectively. The Chebyshev spectral GCN exploits the
Chebyshev polynomial expansion and spectral graph theory to
learn the localized spectral filters, which can extract local and
composite features on graphs that encode complex geometric
structures [91].

Subsequently, CEHSHIRE employs a Frobenius norm-based
(also known as the two-norm) pooling function to generate

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

hyperlink embeddings, i.e.,

y(norm)
pl =

 1
cp

∑
vi ∈ep

x̂2
il

1
2

(49)

where ynorm
pl denotes the lth entry of ynorm

p and x̂il denotes the
lth entry of x̂i . The Frobenius norm-based function is efficient
at separating boundaries of hyperlink embedding space [101].
In order to achieve a better performance, CHESHIRE also
incorporates the maximum minimum-based pooling function
as defined in (46). Thus, the final score of hyperlink ep is
given by

Sp = sigmoid
(

Wscore

(
y(norm)

p

∣∣∣∣∣∣y(maxmin)
p

)
+ bscore

)
(50)

where “||” denotes the vector concatenation operation, and
Wscore and bscore are learnable parameters in the neural
network. CHESHIRE has effectively addressed the limitations
of HyperSAGCN and NHP and achieved an outstanding per-
formance on various types of hypergraph data.

IV. EXPERIMENTS

We selected representative methods from each category to
perform a benchmark study on multiple hypergraph applica-
tions. Since those indirect methods were proposed as baseline
methods in the work of hyperlink prediction, we only consid-
ered direct methods here. The selected methods include HPRA
(similarity-based), HPLSF (probability-based), C3MM (matrix
optimization-based), HyperSAGCN (deep learning-based),
NHP (deep learning-based), and CHESHIRE (deep learning-
based). We did not compare the matrix optimization-based
approach HPLS and the other two deep learning-based
approaches, FamilySet and SNALS, since their codes are not
publicly available. We used the second version of HPLSF
described in [32]. All the experiments presented were per-
formed on a Macintosh machine with 32-GB RAM and an
Apple M1 Pro chip with ten-core CPU (3.2 GHz), 16-core
GPU, and 16-core Neural Engine in Python 3.9 and MATLAB
R2022a.

A. Benchmark Datasets

We used the following five datasets to have direct compar-
isons among HPRA, HPLSF, C3MM, HyperSAGCN, NHP,
and CHESHIRE.

1) Enron e-mail network, where each employee is a node
and each e-mail represents a hyperlink connecting the
sender and the recipients in the e-mail.

2) High school contact network, where each student/teacher
is a node and each face-to-face contact represents a
hyperlink connecting the people involved in the contact.
We only considered contacts that involve more than two
persons in this network.

3) Congress bill network, where each U.S. Congressperson
is a node and each legislative bill puts forth in both the
House of Representatives and the Senate represents a
hyperlink connecting the sponsors and cosponsors of the
bill. We only considered bills put forth within a range
of time.

TABLE II
SUMMARY OF ENRON E-MAIL, HIGH SCHOOL CONTACT, CONGRESS BILL,

NDC CLASS, AND BIGG METABOLIC NETWORKS. NOTE THAT THE
STATISTICS MAY DIFFER FROM THE ORIGINAL DATASETS, SINCE

WE PREPROCESSED THE NETWORKS (BY DELETING
DUPLICATED HYPERLINKS AND HYPERLINKS

WITH CARDINALITY 1)

4) National drug code (NDC) class network, where each
class label is a node and each drug represents a hyperlink
connecting the class labels of the drug.

5) Biochemical, genetic, and genomic (BiGG) metabolic
network (E. coli Model iAF1260b), where each metabo-
lite is a node and each chemical reaction represents a
hyperlink connecting the reactant and product metabo-
lites in the reaction.

For all the networks, we did not consider duplicated hyperlinks
or hyperlinks with cardinality 1. Details of the datasets,
including the number of nodes and the number of hyperlinks,
are shown in Table II. Node degree and hyperlink cardinality
distributions of each dataset are shown in Fig. 5. The BiGG
metabolic network (iAF1260b) can be downloaded from the
BiGG database [89], and the remaining datasets can be down-
loaded from [102].

B. Negative Sampling

Most of the selected hyperlink prediction methods, includ-
ing HPLSF, HyperSAGCN, NHP, and CHESHIRE, require
negative sampling, i.e., creating fake hyperlinks that do not
exist, during training to balance specificity and sensitivity of
the trained model. We here generalize the sampling strategy
proposed in NHP. Suppose that we have a hypergraph H. For
each (positive) hyperlink e ∈ E , we generate a corresponding
negative hyperlink f , where α × 100% of the nodes in
f are from e and the remaining are from V\{e}. Denote
the negative hyperlink set as F . The number α controls the
genuineness of the negative hyperlinks; i.e., higher values
of α indicate that the negative hyperlinks are more close
to the true. In addition, we define β to be the number of
times of negative sampling, which controls the ratio between
positive and negative hyperlinks. Note that the remaining
two methods—HPRA and C3MM—do not require negative
sampling, but we intentionally introduced negative hyperlinks
to the testing/candidate set in order to have a fair compar-
ison. More negative sampling strategies, such as adversarial
training-based method, can be found in [43] and [103].

C. Evaluation Metrics

The task of hyperlink prediction with positive and negative
hyperlinks can be treated as a binary classification problem.
We, therefore, evaluated the performance based on the area
under the receiver operating characteristic curve (AUROC),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LIU: SURVEY ON HYPERLINK PREDICTION 13

Fig. 5. Node degree distribution and hyperlink cardinality distribution of the five networks.

TABLE III
TEST RESULTS FOR THE ENRON E-MAIL, HIGH SCHOOL CONTACT, CONGRESS BILL, NDC CLASS, AND BIGG METABOLIC NETWORKS USING THE

METRICS AUROC, AUPRC, ACCURACY, AND F1 SCORE. WE CHOSE α = 0.5 AND β = 1 IN NEGATIVE SAMPLING. EACH
VALUE IS THE MEAN OVER TEN TRIALS

the area under the precision–recall curve (AUPRC), accuracy,
and F1 score. AUROC is one of the most popular evaluation
metrics for checking any classification model’s performance.
AUROC can tell how much the model is capable of distin-
guishing between classes. The higher the AUROC, the better
the model is at predicting negative samples as negative and
positive samples as positive. Different from AUROC, AUPRC
is a useful classification metric for imbalanced data, which
measures the model’s capability in predicting positive samples
as positive without accidentally marking any negative samples
as positive. Accuracy is also a commonly used classifica-
tion metric that computes the fraction of correct predictions.
Finally, F1 score combines recall and precision of a classifier
into a single metric by taking their harmonic mean. Recall
measures the model’s capability to predict positive samples as
positive, while precision reflects how reliable the model is in
classifying samples as positive. All the metrics can represent
the overall capability of each hyperlink prediction method in
recovering missing hyperlinks.

D. Train Test Split

For each network, we randomly split the hyperlink set,
including positive and negative hyperlinks, into training and
testing sets by a ratio of 3:2 over ten trials. No negative sample

was introduced in the training set for HPRA and C3MM.
We used the same hyperparameters as set by default in the
original codes. For HyperSAGCN, NHP, and CHESHIRE,
we set their hidden dimensions to be consistent and utilized
the same loss function defined in [104]. We trained the six
learning models on the training set and tested on the testing
set.

E. Results

We first considered a negative sampling strategy with α =

0.5 and β = 1 as used in NHP. The results are shown
in Table III, where each value is the mean over ten trials,
and we picked the optimal threshold based on the Youden’s
index [105] (with optimal balance between false positive and
true positive rates) for computing accuracy and F1 score.
HPRA works well on the relatively dense networks (e.g.,
the Enron e-mail and high school contact networks), but
has a poor performance on the relatively sparse networks
(e.g., the NDC class and BiGG metabolic networks). This
is because the resource allocation index used in HPRA is a
local similarity measure. In addition, HyperSAGCN performs
outstandingly on all the networks except BiGG iAF1260b.
As mentioned, the mean pooling in HyperSAGCN cannot
precisely represent hyperlink features for hypergraphs with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV
TEST RESULTS FOR THE ENRON E-MAIL, HIGH SCHOOL CONTACT, CONGRESS BILL, NDC CLASS, AND BIGG METABOLIC NETWORKS USING THE

METRICS AUROC, AUPRC, ACCURACY, AND F1 SCORE. WE CHOSE α = 0.8 AND β = 3 IN NEGATIVE SAMPLING.
EACH VALUE IS THE MEAN OVER TEN TRIALS

TABLE V
COMPUTATIONAL TIMES (IN SECOND) OF THE SELECTED METHODS FOR RUNNING THE FIVE DATASETS ON A MACINTOSH MACHINE WITH 32-GB

RAM AND AN APPLE M1 PRO CHIP WITH TEN-CORE CPU (3.2 GHz), 16-CORE GPU, AND 16-CORE NEURAL ENGINE IN PYTHON 3.9 AND
MATLAB R2022A. NOTE THAT WE ONLY CONSIDERED SINGLE-CORE CPU EXECUTION TIMES FOR ALL THE SELECTED METHODS

hyperlinks formed by dissimilar nodes, such as metabolic
networks. Interestingly, the performance of NHP is completely
contrary to that of HPRA. NHP initializes node emebeddings
of a hypergraph by using Node2Vec on its expanded graph.
Thus, when the hypergraph becomes dense, the graph-based
node embeddings may not be able to accurately capture
the structural features of the hypergraph. CHESHIRE over-
comes the limitations of HyperSAGCN and NHP, so it
achieves an overall preeminent and stable performance on
the five networks compared with the other methods, despite
being lower than the performance of HyperSAGCN on the
Enron e-mail network. Finally, both HPLSF and C3MM have
mediocre performances on all the networks. The former only
considers pairwise distances between nodes in generating
hyperlink embeddings, while the latter predicts hyperlink in
the adjacency space (i.e., based on edges in the expanded
graph).

We repeated the same experiment using another negative
sampling parameters with α = 0.8 and β = 3. The results
are shown in Table IV, where the six hyperlink prediction
methods, in general, behave similarly as the previous, despite
considerable decreases due to the introduction of more genuine
negative hyperlinks. Nevertheless, the deep learning-based
model CHESHIRE still accomplishes a superb and stable
performance over all the networks.

V. DISCUSSION

The experiments reported here highlight that the six selected
direct hyperlink prediction methods are able to effectively
recover artificially removed hyperlinks. We also computed
the computational times of the selected methods for running
the five datasets based on the first negative sample rule
(Table V). HPRA, HPLSF, and C3MM only allow CPU

computation, while HyperSAGCN, NHP, and CHESHIRE may
enable GPU computation (through deep learning libraries,
such as PyTorch). In our experiment, we only considered
single-core CPU execution times for all the selected methods.
We have the following interesting observations according to
their experiment performances.

1) HPRA is the most computationally efficient method
among the six selected methods. More importantly,
HPRA performs well on relatively dense hypergraphs
(e.g., the Enron e-mail and high school contact
networks). Hence, HPRA will be extremely useful
when handling hyperlink prediction on large dense
hypergraphs.

2) HPLSF is also a computationally efficient method, but
it cannot achieve a competitive performance compared
with the other selected methods.

3) C3MM is the most time-consuming method among
the six selected methods. The main reason of such
slow speed is that C3MM requires the testing/candidate
hyperlink set to be present during training. In the mean-
time, C3MM cannot achieve a competitive performance
compared with the other selected methods even if it takes
more time.

4) While CHESHIRE is relatively expensive (in terms of
computational time), it achieves the most robust per-
formance compared with the other selected methods;
i.e., the AUROC, AUPRC, accuracy, and F1 score
are consistently outstanding from dense hypergraphs to
sparse hypergraphs (even though they may not be top 1).
Moreover, the deep learning-based methods (including
HyperSAGCN, NHP, and CHESHIRE) still exhibit con-
siderable advantages over other methods for hyperlink
prediction.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LIU: SURVEY ON HYPERLINK PREDICTION 15

However, we were unable to compare the other two deep
learning-based approaches—FamilySet and SNALS—due to
the lack of code availability. It will be useful to include the
two methods in future comparisons. Furthermore, we believe
that deep learning-based methods are more promising in
predicting missing hyperlinks on hypergraphs. In particular,
most hypergraph-based neural networks aim to decompose
a hypergraph into a graph (via clique expansion [68], star
expansion [66], or line expansion [95]) while keeping its
higher order topological attributes. Thus, how to construct
expanded graphs from hypergraphs and how to select appro-
priate graph-based neural networks running on the expanded
graphs become important in designing a new learning archi-
tecture for hyperlink prediction. The explainability of deep
learning-based methods is also significant, which improves
the model’s transparency and allows understandings of the
relationship between hypergraph characteristics and hyperlink
prediction. Various methods have been developed for explain-
ing the model prediction with GCN [106]. By utilizing these
methods (e.g., gradient-based methods [107], [108]), we can
answer questions, such as which input nodes/hyperlinks are
more critical and contributed most toward the final prediction
of hyperlinks? In addition, other than the four mentioned cate-
gories, the idea of hypergraphon, a generalization of graphons,
might be potentially powerful for hyperlink prediction [109],
[110]. Last not but least, as the field of hyperlink prediction
continues to advance, there is a growing opportunity to apply
this technique to address real-world challenges, such as drug
development.

VI. CONCLUSION

In this article, we systematically and comprehensively
reviewed recent progresses on hyperlink prediction. In particu-
lar, we classify the existing hyperlink prediction methods into
four categories, which include similarity-based, probability-
based, matrix optimization-based, and deep learning-based
methods. To study the effectiveness of different types of
the methods, we further conducted a benchmark study on
various hypergraph applications, including e-mail communica-
tion, school contact, congress bill, drug class, and metabolic
networks, using representative methods from each category.
As mentioned above, deep learning-based methods still pre-
vail over other conventional methods. It will be worthwhile
to develop a novel and higher-order-preserved hypergraph
decomposition with appropriate graph-based neural networks
for facilitating the performance of hyperlink prediction.

REFERENCES

[1] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes
of small-world networks,” Proc. Nat. Acad. Sci. USA, vol. 97, no. 21,
pp. 11149–11152, Oct. 2000.

[2] A.-L. Barabási and E. Bonabeau, “Scale-free networks,” Sci. Amer.,
vol. 288, no. 5, pp. 60–69, 2003.

[3] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410,
no. 6825, pp. 268–276, Mar. 2001.

[4] S. Lindsly et al., “4DNvestigator: Time series genomic data analysis
toolbox,” Nucleus, vol. 12, no. 1, pp. 58–64, Jan. 2021.

[5] S. Lindsly et al., “Functional organization of the maternal and pater-
nal human 4D nucleome,” iScience, vol. 24, no. 12, Dec. 2021,
Art. no. 103452.

[6] P. Sweeney, C. Chen, I. Rajapakse, and R. D. Cone, “Network dynamics
of hypothalamic feeding neurons,” Proc. Nat. Acad. Sci. USA, vol. 118,
no. 14, Apr. 2021, Art. no. e2011140118.

[7] X.-W. Wang, Y. Chen, and Y.-Y. Liu, “Link prediction through
deep generative model,” iScience, vol. 23, no. 10, Oct. 2020,
Art. no. 101626.

[8] T. Turki and Z. Wei, “A link prediction approach to cancer drug
sensitivity prediction,” BMC Syst. Biol., vol. 11, no. S5, pp. 1–14,
Oct. 2017.

[9] M. A. Hasan and M. J. Zaki, “A survey of link prediction in social
networks,” in Social Network Data Analytics. Cham, Switzerland:
Springer, 2011, pp. 243–275.

[10] N. Benchettara, R. Kanawati, and C. Rouveirol, “Supervised machine
learning applied to link prediction in bipartite social networks,” in Proc.
Int. Conf. Adv. Social Netw. Anal. Mining, Aug. 2010, pp. 326–330.

[11] P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social
networks: The state-of-the-art,” Sci. China Inf. Sci., vol. 58, no. 1,
pp. 1–38, Jan. 2015.

[12] J. Tang, S. Chang, C. Aggarwal, and H. Liu, “Negative link prediction
in social media,” in Proc. 8th ACM Int. Conf. Web Search Data Mining,
Feb. 2015, pp. 87–96.

[13] N. N. Daud, S. H. A. Hamid, M. Saadoon, F. Sahran, and N. B. Anuar,
“Applications of link prediction in social networks: A review,” J. Netw.
Comput. Appl., vol. 166, Sep. 2020, Art. no. 102716.

[14] G. Berlusconi, F. Calderoni, N. Parolini, M. Verani, and C. Piccardi,
“Link prediction in criminal networks: A tool for criminal intelligence
analysis,” PLoS ONE, vol. 11, no. 4, Apr. 2016, Art. no. e0154244.

[15] M. Lim, A. Abdullah, N. Jhanjhi, and M. Supramaniam, “Hidden link
prediction in criminal networks using the deep reinforcement learning
technique,” Computers, vol. 8, no. 1, p. 8, Jan. 2019.

[16] A. Kumar, S. S. Singh, K. Singh, and B. Biswas, “Link prediction
techniques, applications, and performance: A survey,” Phys. A, Stat.
Mech. Appl., vol. 553, Sep. 2020, Art. no. 124289.

[17] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,”
Phys. A, Stat. Mech. Appl., vol. 390, no. 6, pp. 1150–1170, Mar. 2011.

[18] V. Martínez, F. Berzal, and J.-C. Cubero, “A survey of link prediction
in complex networks,” ACM Comput. Surv., vol. 49, no. 4, pp. 1–33,
Dec. 2017.

[19] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and
Y.-C. Zhang, “Solving the apparent diversity-accuracy dilemma of
recommender systems,” Proc. Nat. Acad. Sci. USA, vol. 107, no. 10,
pp. 4511–4515, Mar. 2010.

[20] P. Jaccard, “‘Étude comparative de la distribution florale dans une
portion des Alpes et des Jura,” Bull. de la Societe Vaudoise des Sci.,
vol. 37, pp. 547–579, Jan. 1901.

[21] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, Mar. 1953.

[22] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proc. NIPS, vol. 31, 2018, pp. 5165–5175.

[23] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent., 2017.

[24] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[25] D. Bacciu, F. Errica, A. Micheli, and M. Podda, “A gentle introduction
to deep learning for graphs,” Neural Netw., vol. 129, pp. 203–221,
Sep. 2020.

[26] M. M. Wolf, A. M. Klinvex, and D. M. Dunlavy, “Advantages to
modeling relational data using hypergraphs versus graphs,” in Proc.
IEEE High Perform. Extreme Comput. Conf. (HPEC), Sep. 2016,
pp. 1–7.

[27] C. Chen and I. Rajapakse, “Tensor entropy for uniform hypergraphs,”
IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2889–2900, Oct. 2020.

[28] C. Chen, A. Surana, A. M. Bloch, and I. Rajapakse, “Controlla-
bility of hypergraphs,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2,
pp. 1646–1657, Apr. 2021.

[29] A. Surana, C. Chen, and I. Rajapakse, “Hypergraph similarity mea-
sures,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 2, pp. 658–674,
Mar. 2023.

[30] Y. Gao, Z. Zhang, H. Lin, X. Zhao, S. Du, and C. Zou, “Hypergraph
learning: Methods and practices,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 5, pp. 2548–2566, May 2022.

[31] C. Berge, Hypergraphs: Combinatorics Finite Sets, vol. 45. Amster-
dam, The Netherlands: Elsevier, 1984.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

16 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[32] M. Zhang, Z. Cui, S. Jiang, and Y. Chen, “Beyond link prediction:
Predicting hyperlinks in adjacency space,” in Proc. 32nd AAAI Conf.
Artif. Intell., 2018, pp. 4430–4437.

[33] N. Yadati, V. Nitin, M. Nimishakavi, P. Yadav, A. Louis, and
P. Talukdar, “NHP: Neural hypergraph link prediction,” in Proc. 29th
ACM Int. Conf. Inf. Knowl. Manage., Oct. 2020, pp. 1705–1714.

[34] G. A. Dotson et al., “Deciphering multi-way interactions in the human
genome,” Nature Commun., vol. 13, no. 1, pp. 1–15, Sep. 2022.

[35] J. Pickard et al., “HAT: Hypergraph analysis toolbox,” PLOS Comput.
Biol., vol. 19, no. 6, Jun. 2023, Art. no. e1011190.

[36] S. Klamt, U.-U. Haus, and F. Theis, “Hypergraphs and cellu-
lar networks,” PLoS Comput. Biol., vol. 5, no. 5, May 2009,
Art. no. e1000385.

[37] J. Zimmermann, C. Kaleta, and S. Waschina, “Gapseq: Informed pre-
diction of bacterial metabolic pathways and reconstruction of accurate
metabolic models,” Genome Biol., vol. 22, no. 1, pp. 1–35, Dec. 2021.

[38] A. Heinken, A. Basile, J. Hertel, C. Thinnes, and I. Thiele, “Genome-
scale metabolic modeling of the human microbiome in the era
of personalized medicine,” Annu. Rev. Microbiol., vol. 75, no. 1,
pp. 199–222, Oct. 2021.

[39] S. Gudmundsson and J. Nogales, “Recent advances in model-assisted
metabolic engineering,” Current Opinion Syst. Biol., vol. 28, Dec. 2021,
Art. no. 100392.

[40] S. Magnúsdóttir et al., “Generation of genome-scale metabolic recon-
structions for 773 members of the human gut microbiota,” Nature
Biotechnol., vol. 35, no. 1, pp. 81–89, Jan. 2017.

[41] J. L. Robinson and J. Nielsen, “Anticancer drug discovery through
genome-scale metabolic modeling,” Current Opinion Syst. Biol., vol. 4,
pp. 1–8, Aug. 2017.

[42] D. Li, Z. Xu, S. Li, and X. Sun, “Link prediction in social networks
based on hypergraph,” in Proc. 22nd Int. Conf. World Wide Web,
May 2013, pp. 41–42.

[43] H. Hwang, S. Lee, C. Park, and K. Shin, “AHP: Learning to negative
sample for hyperedge prediction,” 2022, arXiv:2204.06353.

[44] K. M. Saifuddin, B. Bumgardner, F. Tanvir, and E. Akbas, “HyGNN:
Drug-drug interaction prediction via hypergraph neural network,” 2022,
arXiv:2206.12747.

[45] D. A. Nguyen, C. H. Nguyen, P. Petschner, and H. Mamitsuka,
“SPARSE: A sparse hypergraph neural network for learning multiple
types of latent combinations to accurately predict drug–drug interac-
tions,” Bioinformatics, vol. 38, no. 1, pp. i333–i341, Jun. 2022.

[46] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs:
Clustering, classification, and embedding,” Adv. Neural Inf. Process.
Syst., vol. 19, 2007, pp. 1601–1608.

[47] A. Banerjee, A. Char, and B. Mondal, “Spectra of general hypergraphs,”
Linear Algebra Appl., vol. 518, pp. 14–30, Apr. 2017.

[48] C. Chen, A. Surana, A. Bloch, and I. Rajapakse, “Multilinear time
invariant system theory,” in Proc. Conf. Control Appl. Philadelphia,
PA, USA: SIAM, 2019, pp. 118–125.

[49] C. Chen, A. Surana, A. M. Bloch, and I. Rajapakse, “Multilinear
control systems theory,” SIAM J. Control Optim., vol. 59, no. 1,
pp. 749–776, Jan. 2021.

[50] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Rev., vol. 51, no. 3, pp. 455–500, Aug. 2009.

[51] T. Kumar, K. Darwin, S. Parthasarathy, and B. Ravindran, “HPRA:
Hyperedge prediction using resource allocation,” in Proc. 12th ACM
Conf. Web Sci., Jul. 2020, pp. 135–143.

[52] S.-E. Yoon, H. Song, K. Shin, and Y. Yi, “How much and when do
we need higher-order information in hypergraphs? A case study on
hyperedge prediction,” in Proc. Web Conf., Apr. 2020, pp. 2627–2633.

[53] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2016, pp. 855–864.

[54] Z. Ghahramani and K. A. Heller, “Bayesian sets,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 18, 2005.

[55] Y. Xu, D. Rockmore, and A. M. Kleinbaum, “Hyperlink prediction
in hypernetworks using latent social features,” in Proc. Int. Conf.
Discovery Sci. Cham, Switzerland: Springer, 2013, pp. 324–339.

[56] S. Rendle, “Factorization machines with libFM,” ACM Trans. Intell.
Syst. Technol., vol. 3, no. 3, pp. 1–22, May 2012.

[57] D. Maurya and B. Ravindran, “Hyperedge prediction using tensor
eigenvalue decomposition,” J. Indian Inst. Sci., vol. 101, no. 3,
pp. 443–453, Jul. 2021.

[58] L. Pan, H.-J. Shang, P. Li, H. Dai, W. Wang, and L. Tian, “Predicting
hyperlinks via hypernetwork loop structure,” EPL Europhys. Lett.,
vol. 135, no. 4, Aug. 2021, Art. no. 48005.

[59] M. Zhang, Z. Cui, T. Oyetunde, Y. Tang, and Y. Chen, “Recovering
metabolic networks using a novel hyperlink prediction method,” 2016,
arXiv:1610.06941.

[60] T. Oyetunde, M. Zhang, Y. Chen, Y. Tang, and C. Lo, “BoostGAP-
FILL: Improving the fidelity of metabolic network reconstructions
through integrated constraint and pattern-based methods,” Bioinformat-
ics, vol. 33, no. 4, pp. 608–611, Feb. 2017.

[61] G. Sharma, P. Patil, and M. N. Murty, “C3MM: Clique-closure based
hyperlink prediction,” in Proc. 29th Int. Joint Conf. Artif. Intell.,
Jul. 2020, pp. 3364–3370.

[62] R. Zhang, Y. Zou, and J. Ma, “Hyper-SAGNN: A self-attention based
graph neural network for hypergraphs,” in Proc. Int. Conf. Learn.
Represent., 2020, pp. 1–18.

[63] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Dec. 2009.

[64] B. Srinivasan, D. Zheng, and G. Karypis, “Learning over families of
sets-hypergraph representation learning for higher order tasks,” in Proc.
SIAM Int. Conf. Data Mining (SDM), 2021, pp. 756–764.

[65] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017.

[66] C. Wan, M. Zhang, W. Hao, S. Cao, P. Li, and C. Zhang, “Princi-
pled hyperedge prediction with structural spectral features and neural
networks,” 2021, arXiv:2106.04292.

[67] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in Proc. Eur. Semantic Web Conf. Cham, Switzerland:
Springer, 2018, pp. 593–607.

[68] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural net-
works,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 3558–3565.

[69] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and
P. Talukdar, “HyperGCN: A new method for training graph convo-
lutional networks on hypergraphs,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 32, 2019.

[70] K. Tu, P. Cui, X. Wang, F. Wang, and W. Zhu, “Structural deep
embedding for hyper-networks,” in Proc. 32nd AAAI Conf. Artif. Intell.,
2018, pp. 426–433.

[71] C. Chen, C. Liao, and Y.-Y. Liu, “Teasing out missing reactions
in genome-scale metabolic networks through hypergraph learning,”
Nature Commun., vol. 14, no. 1, p. 2375, Apr. 2023.

[72] J. Yang and X.-D. Zhang, “Predicting missing links in complex
networks based on common neighbors and distance,” Sci. Rep., vol. 6,
no. 1, pp. 1–10, Dec. 2016.

[73] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social
Netw., vol. 25, no. 3, pp. 211–230, Jul. 2003.

[74] M. E. J. Newman, “Clustering and preferential attachment in growing
networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 64, no. 2, Jul. 2001, Art. no. 025102.

[75] D. W. Goodall, “A new similarity index based on probability,” Biomet-
rics, vol. 22, no. 4, pp. 882–907, 1966.

[76] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with restart
and its applications,” in Proc. 6th Int. Conf. Data Mining (ICDM),
Dec. 2006, pp. 613–622.

[77] G. Nikolentzos, P. Meladianos, F. Rousseau, Y. Stavrakas, and
M. Vazirgiannis, “Shortest-path graph kernels for document similarity,”
in Proc. Conf. Empirical Methods Natural Lang. Process., 2017,
pp. 1890–1900.

[78] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 701–710.

[79] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proc. 24th Int. Conf.
World Wide Web, May 2015, pp. 1067–1077.

[80] Z. Zhang, H. Lin, and Y. Gao, “Dynamic hypergraph structure
learning,” in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 3162–3169.

[81] Y. Zhang et al., “Hypergraph label propagation network,” in Proc. AAAI
Conf. Artif. Intell., vol. 34, no. 4, Apr. 2020, pp. 6885–6892.

[82] F. Tudisco, K. Prokopchik, and A. R. Benson, “A nonlinear dif-
fusion method for semi-supervised learning on hypergraphs,” 2021,
arXiv:2103.14867.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LIU: SURVEY ON HYPERLINK PREDICTION 17

[83] L. Qi, H. Chen, and Y. Chen, Tensor Eigenvalues and Their Applica-
tions, vol. 39. Cham, Switzerland: Springer, 2018.

[84] Y. Chen, L. Qi, and X. Zhang, “The Fiedler vector of a Laplacian
tensor for hypergraph partitioning,” SIAM J. Sci. Comput., vol. 39,
no. 6, pp. A2508–A2537, Jan. 2017.

[85] D. Maurya and B. Ravindran, “Hypergraph partitioning using tensor
eigenvalue decomposition,” 2020, arXiv:2011.07683.

[86] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,”
J. ACM, vol. 60, no. 6, pp. 1–39, Nov. 2013.

[87] L. Chen, L. Han, and L. Zhou, “Computing tensor eigenvalues via
homotopy methods,” SIAM J. Matrix Anal. Appl., vol. 37, no. 1,
pp. 290–319, Jan. 2016.

[88] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” Stan-
ford Univ., Autumn Quarter, Lecture Notes, Stanford, CA, USA,
Tech. Rep. EE392o, 2003, pp. 2004–2005, 2004.

[89] Z. A. King et al., “BiGG models: A platform for integrating, standard-
izing and sharing genome-scale models,” Nucleic Acids Res., vol. 44,
no. D1, pp. D515–D522, Jan. 2016.

[90] C. U. Manual, “BM ILOG CPLEX optimization studio,” Version,
vol. 12, pp. 1987–2018, May 1987.

[91] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 29. Red Hook, NY, USA:
Curran Associates, Dec. 2016, pp. 3844–3852.

[92] X. Bresson and T. Laurent, “Residual gated graph ConvNets,” 2017,
arXiv:1711.07553.

[93] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn.
Represent., 2018.

[94] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked
label prediction: Unified message passing model for semi-supervised
classification,” in Proc. 13th Int. Joint Conf. Artif. Intell., Aug. 2021,
pp. 1–7.

[95] C. Yang, R. Wang, S. Yao, and T. Abdelzaher, “Semi-supervised
hypergraph node classification on hypergraph line expansion,” 2020,
arXiv:2005.04843.

[96] S. Bandyopadhyay, K. Das, and M. N. Murty, “Line hypergraph
convolution network: Applying graph convolution for hypergraphs,”
2020, arXiv:2002.03392.

[97] D. Arya, D. K. Gupta, S. Rudinac, and M. Worring, “HyperSAGE:
Generalizing inductive representation learning on hypergraphs,” 2020,
arXiv:2010.04558.

[98] J. Yi and J. Park, “Hypergraph convolutional recurrent neural network,”
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2020, pp. 3366–3376.

[99] Y. Dong, W. Sawin, and Y. Bengio, “HNHN: Hypergraph networks with
hyperedge neurons,” in Proc. ICML Graph Represent. Learn. Beyond
Workshop, 2020.

[100] J. Zhang, Y. Chen, X. Xiao, R. Lu, and S.-T. Xia, “Learnable hyper-
graph Laplacian for hypergraph learning,” 2021, arXiv:2106.05701.

[101] C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio, “Learned-norm
pooling for deep feedforward and recurrent neural networks,” in Proc.
Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases. Cham,
Switzerland: Springer, 2014, pp. 530–546.

[102] A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, and J. Kleinberg,
“Simplicial closure and higher-order link prediction,” Proc. Nat. Acad.
Sci. USA, vol. 115, no. 48, Nov. 2018, Art. no. E11221.

[103] P. Patil, G. Sharma, and M. N. Murty, “Negative sampling for hyperlink
prediction in networks,” in Proc. Pacific–Asia Conf. Knowl. Discovery
Data Mining. Cham, Switzerland: Springer, 2020, pp. 607–619.

[104] Y. Liu et al., “Computational drug discovery with dyadic positive-
unlabeled learning,” in Proc. SIAM Int. Conf. Data Mining. Philadel-
phia, PA, USA: SIAM, 2017, pp. 45–53.

[105] R. Fluss, D. Faraggi, and B. Reiser, “Estimation of the Youden
index and its associated cutoff point,” Biometrical J., vol. 47, no. 4,
pp. 458–472, Aug. 2005.

[106] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 5, pp. 5782–5799, May 2023.

[107] F. Baldassarre and H. Azizpour, “Explainability techniques for graph
convolutional networks,” 2019, arXiv:1905.13686.

[108] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann,
“Explainability methods for graph convolutional neural networks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 10764–10773.

[109] C. Borgs and J. Chayes, “Graphons: A nonparametric method to model,
estimate, and design algorithms for massive networks,” in Proc. ACM
Conf. Econ. Comput., Jun. 2017, pp. 665–672.

[110] Y. Zhao, “Hypergraph limits: A regularity approach,” Random Struct.
Algorithms, vol. 47, no. 2, pp. 205–226, Sep. 2015.

Can Chen received the B.S. degree in mathematics
from the University of California at Irvine, Irvine,
CA, USA, in 2016, and the M.S. degree in electrical
and computer engineering and the Ph.D. degree
in applied and interdisciplinary mathematics from
the University of Michigan, Ann Arbor, MI, USA,
in 2020 and 2021, respectively.

He is currently a Post-Doctoral Research Fellow
with the Channing Division of Network Medicine,
Brigham and Women’s Hospital, Boston, MA, USA,
and with the Harvard Medical School, Boston. His

research interests include control theory, network science, dynamical systems,
machine learning, and computational biology.

Yang-Yu Liu received the Ph.D. degree in
physics from the University of Illinois at
Urbana–Champaign, Champaign, IL, USA,
in 2009.

He was a Post-Doctoral Research Associate
and a Research Assistant Professor at the Center
for Complex Network Research, Northeastern
University, Boston, MA, USA, before 2013. He is
currently an Associate Professor of medicine with
the Harvard Medical School (HMS), Boston, and an
Associate Scientist with the Brigham and Women’s

Hospital (BWH), Boston. His current research interests include studying the
human microbiome from community ecology, dynamical systems, control
theory, and machine learning perspectives. For more information, please
visit: https://yangyuliu.bwh.harvard.edu.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Harvard Library. Downloaded on June 27,2023 at 00:55:02 UTC from IEEE Xplore. Restrictions apply.

