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MULTILINEAR CONTROL SYSTEMS THEORY\ast 

CAN CHEN\dagger , AMIT SURANA\ddagger , ANTHONY M. BLOCH\S , AND INDIKA RAJAPAKSE\P 

Abstract. In this paper, we provide a system theoretic treatment of a new class of multilinear
time-invariant (MLTI) systems in which the states, inputs, and outputs are tensors, and the system
evolution is governed by multilinear operators. The MLTI system representation is based on the
Einstein product and even-order paired tensors. There is a particular tensor unfolding which gives
rise to an isomorphism from this tensor space to the general linear group, i.e., the group of invert-
ible matrices. By leveraging this unfolding operation, one can extend classical linear time-invariant
(LTI) system notions, including stability, reachability, and observability, to MLTI systems. While
the unfolding-based formulation is a powerful theoretical construct, the computational advantages
of MLTI systems can only be fully realized while working with the tensor form, where hidden pat-
terns/structures can be exploited for efficient representations and computations. Along these lines,
we establish new results which enable one to express tensor unfolding--based stability, reachabil-
ity, and observability criteria in terms of more standard notions of tensor ranks/decompositions.
In addition, we develop a generalized CANDECOMP/PARAFAC decomposition-- and tensor train
decomposition--based model reduction framework, which can significantly reduce the number of MLTI
system parameters. We demonstrate our framework with numerical examples.

Key words. multilinear time-invariant systems, stability, reachability, observability, model
reduction, tensor unfolding, tensor ranks/decompositions, block tensors
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1. Introduction. Controlling high-dimensional systems remains an extremely
challenging task as many control strategies do not scale well with the dimension of
the systems. Of particular interest in this paper are complex biological and engi-
neering systems in which structure, function, and dynamics are highly coupled. Such
interactions can be naturally and compactly captured by tensors. Tensors are multi-
dimensional arrays generalized from vectors and matrices and have wide applications
in many domains such as social networks, biology, cognitive science, applied mechan-
ics, scientific computation, and signal processing [8, 12, 17, 22, 24]. For example,
the organization of the interphase nucleus in the human genome reflects a dynam-
ical interaction between 3D genome structure, its function, and its relationship to
phenotype, a concept known as the 4D Nucleome (4DN) [8]. 4DN research requires
a comprehensive view of genome-wide structure, gene expression, and the proteome
and the phenotype, which fits naturally into a tensorial representation [42, 51]. In
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order to apply the standard system and control framework in applications such as
these, tensors need to be vectorized, leading to an extremely high-dimensional system
representation in which the number of states/parameters scales exponentially with
the number of dimensions of the tensors involved [51]. Moreover, with the vector-
ization of tensors, hidden patterns/structures, e.g., redundancy/correlations, can get
lost, and thus one cannot exploit such inherent structures for efficient representations
and computations.

In order to take advantage of tensor algebraic computations, recently a new class
of multilinear time-invariant (MLTI) system has been introduced [43, 51], in which the
states and outputs are preserved as tensors. The system evolution is generated by the
action of multilinear operators which are formed using Tucker products of matrices.
By using tensor unfolding, an operation that transforms a tensor into a matrix, Rogers,
Li, and Russell [43] and Surana, Patterson, and Rajapakse [51] developed methods for
model identification/reduction from tensor time series data. An application of such
tensor-based representation/identification for skeleton-based human behavior recog-
nition from videos demonstrated significant improvements in classification accuracy
compared to standard linear time-invariant (LTI) based approaches [12]. However, the
MLTI system representation is limited because it assumes the multilinear operators
are formed from the Tucker products of matrices (and thus precludes more general
tensorial representations) and does not incorporate control inputs.

The role of tensor algebra has also been explored for modeling and simulation
of nonlinear dynamics, where the vector field is a multilinear function of states [26].
Tensor decomposition techniques such as CANDECOMP/PARAFAC decomposition
(CPD) and tensor train decomposition (TTD) can reduce system size, thus reducing
memory usage and enabling efficient computation during simulations. Note that in
contrast to the MLTI systems framework of [43, 51], in this application, tensor alge-
bra is applied to the system represented in conventional vector form. The author in
[17] exploits tensor decompositions to compute numerical solutions of master equa-
tions associated with Markov processes on extremely large state spaces. The Einstein
product and even-order paired tensors, along with TTD, were utilized for developing
tensor representations for operators based on nearest-neighbor interactions, construc-
tion of pseudoinverses for dimensionality reduction methods, and the approximation
of transfer operators of dynamical systems.

Similarly, using the Einstein product and even-order paired tensors, Chen et al.
[6] generalized the notion of MLTI systems introduced in [43, 51] and also incorpo-
rated control inputs. The Einstein product is a tensor contraction used quite often
in tensor calculus and has profound applications in the study of continuum mechan-
ics and the field of relativity theory [15, 28]. Moreover, the space of even-order
tensors with the Einstein product has many desirable properties. Brazell et al. [3]
discovered that one particular tensor unfolding gives rise to an isomorphism from
this tensor space (of even-order tensors equipped with the Einstein product) to the
general linear group, i.e., the group of invertible matrices. This isomorphism en-
ables one to define matrix equivalent concepts for tensors, including tensor inverse,
positive definiteness, and eigenvalue decomposition. Using these tensor constructs,
Chen et al. [6] developed tensor algebraic conditions for stability, reachability, and
observability for generalized input/output MLTI systems. A new notion of block ten-
sors was also introduced which enables one to express these conditions in a compact
fashion. Interestingly, these conditions look analogous to the classical conditions for
stability, reachability, and observability in LTI systems, and reduce to them as a
special case.
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This paper is an extended version of the introductory paper [6], and in addition
to providing various technical details, we also present several new results. The key
contributions of this paper are as follows:

1. In [6], the reachability and observability conditions for MLTI systems were
stated in terms of the unfolding rank, which requires matricization of the
reachability/observability tensors. Here we establish new results relating the
unfolding rank to other more standard notions of tensor ranks, including
multilinear ranks, CP rank, and TT-ranks. Using such relations, we provide
criteria for reachability and observability which do not require tensor unfold-
ing and can be computed using efficient tensor algebraic methods. Similarly,
we express MLTI system stability conditions using higher-order singular value
decomposition (HOSVD), CPD, and TTD.

2. Using generalized CPD/TTD, we develop a framework for model reduc-
tion of MLTI systems. This approach takes advantage of tensor decompo-
sitions which otherwise cannot be exploited after unfolding the MLTI sys-
tems to obtain a standard LTI form. It also successfully realizes the ten-
sor decomposition--based criteria for stability, reachability, and observability.
Furthermore, we establish new stability results by utilizing the factor matrices
from tensor decompositions for this reduced model with lesser computational
costs.

3. We provide computational and memory complexity analysis for the CPD- and
TTD-based methods in comparison to unfolding-based matrix methods and
demonstrate our framework in four numerical examples.

The paper is organized into nine sections. In section 2, we review tensor prelimi-
naries, including various notions of tensor products, tensor unfolding, and properties
of even-order paired tensors. Section 3 introduces the MLTI system representation
using the Einstein product and even-order paired tensors in detail. In section 4, we
discuss notions of block tensors and tensor ranks/decompositions. We also build new
results relating the unfolding rank of a tensor to other more standard notions of ten-
sor ranks. We establish stability, reachability, and observability conditions for MLTI
systems in section 5. The application of generalized CPD/TTD for model reduction is
discussed in section 6. Four numerical examples are presented in section 7. Finally, we
summarize different numerical approaches associated with MLTI systems in section 8
and conclude in section 9 with future research directions.

2. Tensor preliminaries. We take most of the concepts and notation for tensor
algebra from the comprehensive works of Kolda et al. [24, 25] and Ragnarsson and
Van Loan [40, 41]. A tensor is a multidimensional array. The order of a tensor is
the number of its dimensions, and each dimension is called a mode. An Nth order
tensor usually is denoted by \sansX \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN . The sets of indexed indices and size
of \sansX are denoted by j = \{ j1, j2, . . . , jN\} and \scrJ = \{ J1, J2, . . . , JN\} , respectively. Let

\Pi \scrJ represent the product of all elements in \scrJ , i.e., \Pi \scrJ =
\prod N

n=1 Jn. It is therefore
reasonable to consider scalars x \in \BbbR as zero-order tensors, vectors v \in \BbbR J as first-
order tensors, and matrices A \in \BbbR J\times I as second-order tensors.

2.1. Tensor products. By extending the notion of vector outer product, the
outer product of two tensors \sansX \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN and \sansY \in \BbbR I1\times I2\times \cdot \cdot \cdot \times IM is defined as

(\sansX \circ \sansY )j1j2...jN i1i2...iM = \sansX j1j2...jN\sansY i1i2...iM .
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In contrast, the inner product of two tensors \sansX ,\sansY \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN is defined as

\langle \sansX ,\sansY \rangle =
J1\sum 

j1=1

\cdot \cdot \cdot 
JN\sum 

jN=1

\sansX j1j2...jN\sansY j1j2...jN ,

leading to the tensor Frobenius norm \| \sansX \| 2 = \langle \sansX ,\sansX \rangle . We say two tensors \sansX and \sansY are
orthogonal if the inner product \langle \sansX ,\sansY \rangle = 0. The matrix tensor multiplication \sansX \times n A
along mode n for a matrix A \in \BbbR I\times Jn is defined by (\sansX \times n A)j1j2...jn - 1ijn+1...jN =\sum Jn

jn=1 \sansX j1j2...jn...jNAijn . This product can be generalized to what is known as the

Tucker product, for An \in \BbbR In\times Jn ,

\sansX \times 1 A1 \times 2 A2 \times 3 \cdot \cdot \cdot \times N AN = \sansX \times \{ A1,A2, . . . ,AN\} \in \BbbR I1\times I2\times \cdot \cdot \cdot \times IN .(2.1)

2.2. Tensor unfolding. Tensor unfolding is considered as a critical operation
in tensor computations [24, 25, 40]. In order to unfold a tensor \sansX \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN

into a vector or a matrix, we use an index mapping function ivec(\cdot ,\scrJ ) : \BbbZ +\times \BbbZ +\times N\cdot \cdot \cdot 
\times \BbbZ + \rightarrow \BbbZ + as defined by Ragnarsson and Van Loan [40, 41], which is given by

ivec(j,\scrJ ) = j1 +

N\sum 
k=2

(jk  - 1)

k - 1\prod 
l=1

Jl.

The index mapping function ivec returns the index for tensor vectorization, i.e., x \in 
\BbbR \Pi \scrJ is the vectorization of \sansX such that xivec(j,\scrJ ) = \sansX j1j2...jN . If N = 2, ivec will
stack all the columns of \sansX .

For tensor matricization, let z be an integer such that 1 \leq z < N , and let \BbbS be
a permutation of \{ 1, 2, . . . , N\} . If r = \{ \BbbS (1),\BbbS (2), . . . ,\BbbS (z)\} and c = \{ \BbbS (z + 1),\BbbS (z +
2), . . . ,\BbbS (N)\} with \scrP = \{ J\BbbS (1), J\BbbS (2), . . . , J\BbbS (z)\} and \scrQ = \{ J\BbbS (z+1), J\BbbS (z+2), . . . , J\BbbS (N)\} ,
respectively, the rc-unfolding matrix of \sansX , denoted by X(rc) \in \BbbR \Pi \scrP \times \Pi \scrQ , is given by

(2.2) (X(rc))pq = \sansX \BbbS 
p1p2...pzq1q2...qN - z

,

where p = ivec(p,\scrP ), q = ivec(q,\scrQ ), and \sansX \BbbS is the \BbbS -transpose of \sansX defined as

\sansX \BbbS 
j\BbbS (1)j\BbbS (2)...j\BbbS (N)

= \sansX j1j2...jN .

When z = 1 and \BbbS =
\Bigl( 
1 2 . . . n n+ 1 . . . N
n 1 . . . n - 1 n+ 1 . . . N

\Bigr) 
, the tensor unfolding is called the

n-mode matricization, denoted by X(n).

2.3. Even-order paired tensors. Here we discuss the notion of even-order
paired tensors and the Einstein product, which will play an important role in devel-
oping the MLTI systems theory.

Definition 2.1. Even-order paired tensors are 2N th order tensors with elements
specified using a pairwise index notation, i.e., \sansA j1i1...jN iN for \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN .

Definition 2.2. Given an even-order paired tensor \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN , the
Einstein product between \sansA and an N th order tensor \sansX \in \BbbR I1\times I2\times \cdot \cdot \cdot \times IN is the con-
traction along the second index in each pair from \sansA , i.e.,

(2.3) (\sansA \ast \sansX )j1j2...jN =

I1\sum 
i1=1

\cdot \cdot \cdot 
IN\sum 

iN=1

\sansA j1i1...jN iN\sansX i1i2...iN .
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We use the pairwise index notation for even-order tensors because it is convenient
for defining the unfolding transformation \varphi (see Definition 2.4) and for representing
core matrices/tensors in tensor decompositions (see subsection 6.1). Note that even-
order paired tensors and the Einstein product (2.3) can be viewed as multidimensional
generalizations of matrices and the standard matrix-vector product, respectively [17].
Similar to the standard matrix-matrix product, one can also define a generalized
form of the Einstein product between two even-order paired tensors. We will see later
that the Einstein product can be efficiently computed using tensor decompositions of
even-order paired tensors; see Proposition 6.3.

Definition 2.3. Given two even-order paired tensors \sansA \in \BbbR J1\times K1\times \cdot \cdot \cdot \times JN\times KN

and \sansB \in \BbbR K1\times I1\times \cdot \cdot \cdot \times KN\times IN , the Einstein product \sansA \ast \sansB \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN is defined
by

(2.4) (\sansA \ast \sansB )j1i1...jN iN =

K1\sum 
k1=1

\cdot \cdot \cdot 
KN\sum 

kN=1

\sansA j1k1...jNkN
\sansB k1i1...kN iN .

Brazell et al. [3] investigated properties of even-order tensors under the Einstein
product (different from (2.4)) through construction of an isomorphism to GL(n,\BbbR ),
i.e., the set of n\times n real-valued invertible matrices. The existence of the isomorphism
enables one to generalize several matrix concepts, such as invertibility and eigenvalue
decomposition, to the tensor case [3, 9, 18, 30, 50]. We can establish an analogous
isomorphism for even-order paired tensors by a permutation of indices.

Definition 2.4. Define the map \varphi : \BbbT J1I1...JNIN (\BbbR ) \rightarrow \BbbM \Pi \scrJ \Pi \scrI (\BbbR ) with \varphi (\sansA ) =
A defined componentwise as

(2.5) \sansA j1i1...jN iN
\varphi  - \rightarrow Aivec(j,\scrJ )ivec(i,\scrI ),

where \BbbT J1I1...JNIN (\BbbR ) is the set of all real J1 \times I1 \times \cdot \cdot \cdot \times JN \times IN even-order paired
tensors, and \BbbM \Pi \scrJ \Pi \scrI (\BbbR ) is set of all real \Pi \scrJ \times \Pi \scrI matrices.

The map \varphi can be viewed as a tensor unfolding discussed in (2.2) with z = N and

\BbbS =
\Bigl( 
1 2 . . . N N + 1 N + 2 . . . 2N
1 3 . . . 2N  - 1 2 4 . . . 2N

\Bigr) 
, so the Frobenius norm is preserved through

\varphi , i.e., \| \sansA \| = \| \varphi (\sansA )\| . More significantly, \varphi is bijective, and the restriction of \varphi  - 1 on
the general linear group produces a group isomorphism.

Corollary 2.5. Let Jn = In for all n and \BbbG J1J1...JNJN
(\BbbR ) = \varphi  - 1(GL(\Pi \scrJ ,\BbbR )),

i.e., \BbbG J1J1...JNJN
is the space of all even-order paired tensors which maps to the general

linear group under \varphi . Then \BbbG J1J1...JNJN
(\BbbR ) is a group equipped with the Einstein

product (2.4), and \varphi is a group isomorphism.

Detailed proofs can be found in [3, 18]. Based on the unfolding property, we can
define some tensor notation analogous to matrices as follows:

1. For an even-order paired tensor \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN , \sansT \in \BbbR I1\times J1\times \cdot \cdot \cdot \times IN\times JN

is called the U-transpose of \sansA if \sansT i1j1...iN jN = \sansA j1i1...jN iN , and is denoted by
\sansA \top . We refer to an even-order paired tensor that is identical to its U-transpose
as weakly symmetric.

2. For an even-order paired tensor \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN , the unfolding rank of
\sansA is defined as rankU (\sansA ) = rank(\varphi (\sansA )) [30].

3. An even-order ``square"" tensor \sansD \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN is called the U-diagonal
tensor if all its entries are zeros except for \sansD j1j1...jN jN . If all the diagonal
entries \sansD j1j1...jN jN = 1, then \sansD is the U-identity tensor, denoted by \sansI .
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4. For an even-order square tensor \sansA \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN , if there exists a tensor
\sansB \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN such that \sansA \ast \sansB = \sansB \ast \sansA = \sansI , then \sansB is called the U-
inverse of \sansA , denoted by \sansA  - 1.

5. An even-order square tensor \sansA \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN is called U-positive defi-
nite if \sansX \top \ast \sansA \ast \sansX > 0 for any nonzero tensor \sansX \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN .

6. For an even-order square tensor \sansA \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN , the unfolding deter-
minant of \sansA is defined as detU (\sansA ) = det(\varphi (\sansA )) [30].

In Appendix A.1, we show that the notion of U-positive definiteness is a generalization
of M-positive definiteness and rank-one positive definiteness proposed in [19, 39] for
the even-order elasticity tensors.

3. MLTI system representation. To describe the evolution of tensor time
series, the authors in [43, 51] introduced an MLTI system using the Tucker product,
which can be generalized by incorporating control inputs as follows:\Biggl\{ 

\sansX t+1 = \sansX t \times \{ A1, . . . ,AN\} + \sansU t \times \{ B1, . . . ,BN\} ,
\sansY t = \sansX t \times \{ C1, . . . ,CN\} ,

(3.1)

where \sansX t \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN is the latent state space tensor, \sansY t \in \BbbR I1\times I2\times \cdot \cdot \cdot \times IN is
the output tensor, and \sansU t \in \BbbR K1\times K2\times \cdot \cdot \cdot \times KN is the control tensor. An \in \BbbR Jn\times Jn ,
Bn \in \BbbR Jn\times Kn , and Cn \in \BbbR In\times Jn are real-valued matrices for n = 1, 2, . . . , N . The
Tucker product provides a suitable way to deal with MLTI systems because it allows
one to exploit matrix computations. However, we find that (3.1) can be replaced by
a more general representation using the notion of even-order paired tensors and the
Einstein product. Moreover, the new representation is more concise and systematic
compared to the tensor-based linear system proposed in [12].

Definition 3.1. A more general representation of an MLTI system is given by\Biggl\{ 
\sansX t+1 = \sansA \ast \sansX t + \sansB \ast \sansU t,

\sansY t = \sansC \ast \sansX t,
(3.2)

where \sansA \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN , \sansB \in \BbbR J1\times K1\times \cdot \cdot \cdot \times JN\times KN , and \sansC \in \BbbR I1\times J1\times \cdot \cdot \cdot \times IN\times JN are
even-order paired tensors.

Lemma 3.2. Let \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN be an even-order paired tensor. Then
the product \sansA \times \{ U1,V1, . . . ,UN ,VN\} = \sansU \ast \sansA \ast \sansV \top \in \BbbR K1\times L1\times \cdot \cdot \cdot \times KN\times LN for \sansU =
U1\circ U2\circ \cdot \cdot \cdot \circ UN and \sansV = V1\circ V2\circ \cdot \cdot \cdot \circ VN , where Un \in \BbbR Kn\times Jn and Vn \in \BbbR Ln\times In .

Proof. This follows from the definitions of the Tucker and Einstein products.

Proposition 3.3. The governing equations (3.2) can be obtained from (3.1) by
setting \sansA , \sansB , and \sansC to be the outer products of component matrices \{ A1,A2, . . . ,AN\} ,
\{ B1,B2, . . . ,BN\} , and \{ C1,C2, . . . ,CN\} , respectively.

Proof. The result follows from Lemma 3.2 with In = 1 and Vn = 1 for all n.

The main advantages of the MLTI system (3.2) are as follows:
1. The Einstein product representation (3.2) of MLTI systems is indeed the

generalization of (3.1). While Proposition 3.3 shows that MLTI systems in
the form of (3.1) can always be transformed into the form of (3.2), the converse
is not always true; see (6.4), for example. It is true only when R1 = R2 =
R3 = 1.

D
ow

nl
oa

de
d 

02
/2

5/
21

 to
 1

41
.2

14
.1

7.
12

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTILINEAR CONTROL SYSTEMS THEORY 755

2. The MLTI system (3.2) takes a form similar to the standard LTI system model
with matrix product replaced with the Einstein product, so the representation
is more natural for developing the MLTI systems theory including notions of
stability, reachability, and observability. Moreover, the concept of transfer
functions, which is commonly used in modern control theory, can be extended
for MLTI systems; see Definition 3.4.

3. We can exploit tensor decompositions (see subsection 4.2) of the even-order
paired tensors \sansA , \sansB , and \sansC to accelerate computations in MLTI systems the-
ory. In particular, if \sansA , \sansB , and \sansC possess low tensor rank structures, we can
obtain a low-parameter MLTI representation. In addition, many operations
such as the Einstein product and unfolding rank can be achieved efficiently in
the tensor decomposition format compared to unfolding-based matrix meth-
ods; see the remarks in sections 5 and 6.

4. Traditional LTI model reduction and identification techniques such as bal-
anced truncation and eigensystem realization algorithm can be extended us-
ing the form of (3.2).

Definition 3.4. The transfer function \sansG (z) of (3.2) is given by

(3.3) \sansG (z) = \sansC \ast (z\sansI  - \sansA ) - 1 \ast \sansB ,

where z is a complex variable.

We first investigate the elementary solution to the MLTI system (3.2), which is
crucial in the analysis of stability, reachability, and observability.

Proposition 3.5. For an unforced MLTI system \sansX t+1 = \sansA \ast \sansX t, the solution for

\sansX at time k, given initial condition \sansX 0, is \sansX k = \sansA k \ast \sansX 0, where \sansA k = \sansA \ast \sansA \ast k\cdot \cdot \cdot \ast \sansA .
The proof is straightforward using the notion of even-order paired tensors and the

Einstein product. Applying Proposition 3.5, we can write down the explicit solution
of (3.2), which takes an analogous form to the LTI system

(3.4) \sansX k = \sansA k \ast \sansX 0 +

k - 1\sum 
j=0

\sansA k - j - 1 \ast \sansB \ast \sansU j .

Lastly, we want to note that one can always transform the MLTI system (3.2)
into an LTI system using \varphi , i.e., xt+1 = \varphi (\sansA )xt+\varphi (\sansB )ut, and determine the stability,
reachability, and observability using classical matrix techniques.

4. Tensor algebra continued. We next discuss notions of block tensors and
tensor decompositions which will form the basis for developing tensor algebra--based
concepts of stability, reachability, and observability of the MLTI system (3.2).

4.1. Block tensors. Analogously to block matrices, one can define the notion
of block tensors. For tensors of the same size, we propose a block tensor construction
(first appeared in [6]) which does not introduce any wasteful zeros compared to the
block tensors proposed in [50], and thus offers computational advantages.

Definition 4.1. Let \sansA ,\sansB \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN be two even-order paired tensors.
The n-mode row block tensor

\bigm| \bigm| \sansA \sansB 
\bigm| \bigm| 
n
\in \BbbR J1\times I1\times \cdot \cdot \cdot \times Jn\times 2In\times \cdot \cdot \cdot \times JN\times IN is defined by

(
\bigm| \bigm| \sansA \sansB 

\bigm| \bigm| 
n
)j1l1...jN lN =

\left\{     
\sansA j1l1...jN lN , jk = 1, . . . , Jk, lk = 1, . . . , Ik \forall k,
\sansB j1l1...jN lN , jk = 1, . . . , Jk \forall k, lk = 1, . . . , Ik for k \not = n,

and lk = Ik + 1, . . . , 2Ik for k = n.
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For example, if \sansA ,\sansB \in \BbbR 2\times 2\times 2\times 2, then the 1-mode row block tensor is given by\bigm| \bigm| \sansA \sansB 
\bigm| \bigm| 
1
\in \BbbR 2\times 4\times 2\times 2 such that (

\bigm| \bigm| \sansA \sansB 
\bigm| \bigm| 
1
):i1:: = \sansA for i1 = 1, 2 and (

\bigm| \bigm| \sansA \sansB 
\bigm| \bigm| 
1
):i1:: =

\sansB for i1 = 3, 4. Similarly for
\bigm| \bigm| \sansA \sansB 

\bigm| \bigm| 
2
\in \BbbR 2\times 2\times 2\times 4. Detailed explanations of the

MATLAB colon operation ``:"" can be found in Appendix D.1. When N = 1, it
reduces to the row block matrices. The n-mode column block tensor\bigm| \bigm| \bigm| \bigm| \sansA \sansB 

\bigm| \bigm| \bigm| \bigm| 
n

\in \BbbR J1\times I1\times \cdot \cdot \cdot \times 2Jn\times In\times \cdot \cdot \cdot \times JN\times IN

can be defined in a similar manner. The n-mode block tensors exhibit many properties
analogous to block matrix computations, e.g., the Einstein product can distribute over
block tensors, and the blocks of n-mode row block tensors map to contiguous blocks
under \varphi up to some permutations [40]; see details in Appendix A.2. Therefore, rank is
preserved in the block tensor unfolding, i.e., rankU (

\bigm| \bigm| \sansA \sansB 
\bigm| \bigm| 
n
) = rank(

\bigl[ 
\varphi (\sansA ) \varphi (\sansB )

\bigr] 
),

where [\cdot ] denotes the block matrix operation.
Given K even-order paired tensors \sansX n \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN , one can apply Defini-

tion 4.1 successively to create a J1 \times I1 \times \cdot \cdot \cdot \times Jn \times InK \times \cdot \cdot \cdot \times JN \times IN even-order
n-mode row block tensor. However, a more general concatenation approach can be
defined for multiple blocks.

Definition 4.2. Given K even-order paired tensors \sansX n \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN , if
K = K1K2 . . .KN , the J1 \times I1K1 \times \cdot \cdot \cdot \times JN \times INKN even-order mode row block
tensor \sansY can be constructed in the following way:

1. Compute the 1-mode row block tensor concatenation over \{ \sansX 1, . . . ,\sansX K1
\} ,

\{ \sansX K1+1, . . . ,\sansX 2K1
\} , and so on to obtain K2K3 . . .KN block tensors denoted

by \sansX 
(1)
1 ,\sansX 

(1)
2 , . . . ,\sansX 

(1)
K2K3...KN

.

2. Compute the 2-mode row block tensors concatenation over \{ \sansX (1)
1 , . . . ,\sansX 

(1)
K2

\} ,
\{ \sansX (1)

K2+1, . . . ,\sansX 
(1)
2K2

\} , and so on to obtain K3K4 . . .KN block tensors denoted

by \sansX 
(2)
1 ,\sansX 

(2)
2 , . . . ,\sansX 

(2)
K3K4...KN

.
3. Keep repeating the process until the last N -mode row block tensor is obtained.

We denote the mode row block tensor as \sansY =
\bigm| \bigm| \sansX 1 \sansX 2 . . . \sansX K

\bigm| \bigm| .
For example, suppose that \sansX n \in \BbbR 2\times 2\times 2\times 2\times 2\times 2 for n = 1, 2, . . . ,K and K = 8.

Let K = K1K2K3 with K1 = K2 = K3 = 2. Given this factorization of K, the mode
row block tensor \sansY \in \BbbR 2\times 4\times 2\times 4\times 2\times 4 is constructed in the manner shown in Figure 1,

in which \sansX 
(1)
n \in \BbbR 2\times 4\times 2\times 2\times 2\times 2 and \sansX 

(2)
n \in \BbbR 2\times 4\times 2\times 4\times 2\times 2. Another factorization with

K1 = 2, K2 = 4, and K3 = 1 would return \sansY \in \BbbR 2\times 4\times 2\times 8\times 2\times 2. The generalized mode
column block tensors with multiple blocks can be constructed in a similar manner.
When In = 1 for all n, the above generalized mode row block tensor maps exactly to
contiguous blocks in its unfolding under \varphi , which could be beneficial in many block
tensor applications. Furthermore, the choices of Kn may affect the structure of mode
block tensors, which can be significant in tensor ranks/decompositions [7].

4.2. Tensor ranks and decompositions. There are several definitions of ten-
sor ranks [11, 24, 25], which are intimately related to different notions of tensor
decompositions. The multilinear ranks or the n-ranks of \sansX are the ranks of the n-
mode matricizations, denoted by rankn(\sansX ). The multilinear ranks are related to the
so-called higher-order singular value decomposition (HOSVD), a multilinear general-
ization of the matrix singular value decomposition (SVD) [2, 10].

Theorem 4.3 (HOSVD). A tensor \sansX \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN can be written as

(4.1) \sansX = \sansS \times 1 U1 \times 2 \cdot \cdot \cdot \times N UN ,
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\bigm| \bigm| \bigm| \sansX (2)
1 \sansX 

(2)
2

\bigm| \bigm| \bigm| 
3\underbrace{}  \underbrace{}  

\sansY =| \sansX 1 \sansX 2 . . . \sansX 8| 

\bigm| \bigm| \bigm| \sansX (1)
1 \sansX 

(1)
2

\bigm| \bigm| \bigm| 
2\underbrace{}  \underbrace{}  

\sansX 
(2)
1

\bigm| \bigm| \sansX 1 \sansX 2

\bigm| \bigm| 
1\underbrace{}  \underbrace{}  

\sansX 
(1)
1

\sansX 1 \sansX 2

\bigm| \bigm| \sansX 3 \sansX 4

\bigm| \bigm| 
1\underbrace{}  \underbrace{}  

\sansX 
(1)
2

\sansX 3 \sansX 4

\bigm| \bigm| \bigm| \sansX (1)
3 \sansX 

(1)
4

\bigm| \bigm| \bigm| 
2\underbrace{}  \underbrace{}  

\sansX 
(2)
2

\bigm| \bigm| \sansX 5 \sansX 6

\bigm| \bigm| 
1\underbrace{}  \underbrace{}  

\sansX 
(1)
3

\sansX 5 \sansX 6

\bigm| \bigm| \sansX 7 \sansX 8

\bigm| \bigm| 
1\underbrace{}  \underbrace{}  

\sansX 
(1)
4

\sansX 7 \sansX 8

Fig. 1. An example of mode row block tensor.

where Un \in \BbbR Jn\times Jn are orthogonal matrices, and \sansS \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN is a tensor of
which the subtensors \sansS jn=\alpha obtained by fixing the nth index to \alpha have the following
properties:

1. All-orthogonality: two subtensors \sansS jn=\alpha and \sansS jn=\beta are orthogonal for all pos-
sible values of n, \alpha , and \beta subject to \alpha \not = \beta .

2. Ordering: \| \sansS jn=1\| \geq \cdot \cdot \cdot \geq \| \sansS jn=Jn
\| \geq 0 for all possible values of n.

The Frobenius norms \| \sansS jn=j\| , denoted by \gamma 
(n)
j , are the n-mode singular values of \sansX .

De Lathauwer, De Moor, and Vandewalle [10] showed that the number of nonva-
nishing n-mode singular values from the HOSVD of a tensor is equal to its n-mode
multilinear rank. In addition, the error bound of the low multilinear rank approxi-
mation is provided in [10]. Unlike the matrix SVD, the approximation fails to obtain
the best rank approximation of \sansX . Nevertheless, it still can provide a ``good"" estimate
with appropriate n-mode singular values truncated [10].

Analogous to rank-one matrices, a tensor \sansX is rank-one if it can be written as
the outer product of N vectors, i.e., \sansX = a(1) \circ a(2) \circ \cdot \cdot \cdot \circ a(N). The CANDE-
COMP/PARAFAC Decomposition (CPD) decomposes a tensor \sansX \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN

into a sum of rank-one tensors in the form of outer products. It is often useful to
normalize all the vectors and have weights \lambda r > 0 in descending order in front:

(4.2) \sansX =

R\sum 
r=1

\lambda ra
(1)
r \circ a(2)r \circ \cdot \cdot \cdot \circ a(N)

r ,

where a
(n)
r \in \BbbR Jn have unit length, and R is called the CP rank of \sansX if it is the

minimum integer that achieves (4.2). The factor matrices A(n) \in \BbbR Jn\times R are the
combination of the vectors from the rank-one components for n = 1, 2, . . . , N , i.e.,
A(n) =

\bigl[ 
a
(n)
1 a

(n)
2 . . . a

(n)
R

\bigr] 
. The CPD is unique up to scaling and permutation

under a weak condition: for N \geq 2 and R \geq 2,
\sum N

n=1 kA(n) \geq 2R + (N  - 1), where

kA(n) , called the k-rank of a matrix, is the maximum number of columns of A(n) that
are linearly independent of each other [27, 47, 49].
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The CP rank of a tensor is always greater than or equal to its multilinear ranks
[11]. In fact, it is greater than or equal to any unfolding matrix rank [37] (which
can be used in unfolding rank and TT-ranks defined later too). The best CP rank
approximation is ill-posed [11], but carefully truncating the CP rank will yield a good
estimate of the original tensor. Both CPD and HOSVD are special cases of Tucker
decomposition, which decomposes a tensor into the form of Tucker product (2.1), i.e.,
\sansY = \sansX \times \{ A1,A2, . . . ,AN\} [26].

The tensor train decomposition (TTD) of \sansX \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN is given by

(4.3) \sansX =

R0\sum 
r0=1

\cdot \cdot \cdot 
RN\sum 

rN=1

\sansX (1)
r0:r1 \circ \sansX 

(2)
r1:r2 \circ \cdot \cdot \cdot \circ \sansX 

(N)
rN - 1:rN ,

where \{ R0, R1, . . . , RN\} is the set of TT-ranks with R0 = RN = 1, and \sansX (n) \in 
\BbbR Rn - 1\times Jn\times Rn are called the core tensors of the TTD [35]. Here we have used ``:""
for brevity of notation; for the full definition see Appendix D.1. Standard TTD
algorithms, such as Algorithm 3 in [23], with zero truncation will return the optimal
TT-ranks

Rn = rank

\Biggl( 
reshape

\Biggl( 
\sansX ,

n\prod 
i=1

Ji,

N\prod 
i=n+1

Ji

\Biggr) \Biggr) 

for n = 1, 2, . . . , N  - 1. A core tensor \sansX (n) is left-orthonormal if ( \=X
(n)

)\top \=X
(n)

=

I \in \BbbR Rn\times Rn , and is right-orthonormal if X(n)(X(n))\top = I \in \BbbR Rn - 1\times Rn - 1 , where
\=X
(n)

= reshape(\sansX (n), Rn - 1Jn, Rn) and X(n) = reshape(\sansX (n), Rn - 1, JnRn), respec-
tively [14, 23]. Here reshape refers to the reshape operation in MATLAB; see details
in Appendix D.2. Detailed algorithms for left- and right-orthonormalization can be
found in [23]. TTD is advantageous in that it provides better compression, i.e.,
truncating the TT-ranks results in a quasi-optimal approximation of \sansX , and is com-
putationally more robust [35].

Eigenvalue problems for tensors were first explored by Qi [38] and Lim [29] in-
dependently. Brazell et al. [3] formulated a new tensor eigenvalue problem through
the isomorphism \varphi for fourth-order tensors, and Cui et al. [9] extended the tensor
eigenvalue problem to even-order tensors.

Definition 4.4. Let \sansA \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN be an even-order square tensor. If
\sansX \in \BbbC J1\times J2\cdot \cdot \cdot \times JN is a nonzero N th order tensor, \lambda \in \BbbC , and \sansX and \lambda satisfy \sansA \ast \sansX =
\lambda \sansX , then we refer to \lambda and \sansX as the U-eigenvalue and U-eigentensor of \sansA , respectively.

The algebraic and geometric multiplicities of U-eigenvalues can be defined as for
matrices. The generalization of the Caley--Hamilton theorem for the tensor case can
be obtained by the isomorphism property, i.e., an even-order square tensor \sansA satisfies
its own characteristic polynomial p(\lambda ) = detU (\lambda \sansI  - \sansA ). Moreover, it can be shown that
the notion of U-eigenvalues is a generalization of Z-eigenvalues and M-eigenvalues as
proposed in [19, 29, 38]. Detailed proofs are omitted in this paper.

Proposition 4.5. The tensor eigenvalue problem in Definition 4.4 can be repre-
sented by \sansA = \sansV \ast \sansD \ast \sansV  - 1, where \sansD \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN is a U-diagonal tensor with
U-eigenvalues on its diagonal, and \sansV \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN is a mode row block tensor
consisting of all the U-eigentensors, i.e., \sansV =

\bigm| \bigm| \sansX 1 \sansX 2 . . . \sansX \Pi \scrJ 

\bigm| \bigm| . We have chosen
Kn = Jn in applying the mode row block tensor operation which enables us to express
the tensor eigenvalue decomposition in a form analogous to the matrix case.
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Proof. The proof follows immediately from Proposition A.3.

4.3. Rank relations. We establish new results relating the unfolding rank of
an even-order paired tensor to its multilinear ranks, CP rank, and TT-ranks. These
relationships are useful for checking multilinear generalizations of reachability and
observability rank conditions.

Proposition 4.6. Let \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN be an even-order paired tensor. If
rankU (\sansA ) = \Pi \scrJ (or rankU (\sansA ) = \Pi \scrI ), then rank2n - 1(\sansA ) = Jn (or rank2n(\sansA ) = In)
for n = 1, 2, . . . , N .

Proposition 4.7. Let \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN be an even-order paired tensor given
in the CPD format (4.2) with CP rank equal to R. If the conditions

(4.4)

2N\sum 
n=1:2

kA(n) \geq R+N  - 1,

2N\sum 
n=2:2

kA(n) \geq R+N  - 1

are satisfied for every kA(n) \geq 1, then rankU (\sansA ) = R.

The notations
\sum 2N

n=1:2 and
\sum 2N

n=2:2 represent the sums of all odd indices and all
even indices, respectively. The detailed proofs of Propositions 4.6 and 4.7 can be
found in Appendices B.1 and B.2, respectively.

Proposition 4.8. Let \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN be an even-order paired tensor.
Then rankU (\sansA ) = \~RN , where \~RN is the N th optimal TT-rank of \~\sansA , the \BbbS -transpose
of \sansA with \BbbS =

\Bigl( 
1 2 . . . N N + 1 N + 2 . . . 2N
1 3 . . . 2N  - 1 2 4 . . . 2N

\Bigr) 
.

Proof. The result follows from the definition of optimal TT-ranks.

Remark. Given the TTD of \sansA , the TTD of \~\sansA \in \BbbR J1\times \cdot \cdot \cdot \times JN\times I1\times \cdot \cdot \cdot \times IN can be
constructed by manipulating the core tensors \sansA (n) without converting back to the full
format. Assume that Jn = In = J for all n, and R is the average of the TT-ranks
of \sansA . If R remains unchanged or decreases during this conversion, the computational
complexity is estimated to be at most \scrO (N2J3R3).1 A detailed algorithm for the
TTD-based permutation can be found in [7].

5. MLTI systems theory. We now introduce the concepts of stability, reacha-
bility, and observability for MLTI systems. Note that some preliminary results have
appeared in our introductory paper [6].

5.1. Stability. There are many notions of stability for dynamical systems [4,
21, 46]. For LTI systems, it is conventional to investigate so-called internal stability.
Generalizing from LTI systems, the equilibrium point \sansX = \sansO (\sansO denotes the zero
tensors) of an unforced MLTI system is called stable if \| \sansX t\| \leq \gamma \| \sansX 0\| for some \gamma > 0,
asymptotically stable if \| \sansX t\| \rightarrow 0 as t \rightarrow \infty , and unstable if it is not stable.

Proposition 5.1. Let \lambda j be the U-eigenvalues of \sansA for j = ivec(j,\scrJ ). For an
unforced MLTI system, the equilibrium point \sansX = \sansO is

1. stable if and only if | \lambda j | \leq 1 for all j = 1, 2, . . . ,\Pi \scrJ ; for those equal to 1, its
algebraic and geometry multiplicities must be equal;

2. asymptotically stable if | \lambda j | < 1 for all j = 1, 2, . . . ,\Pi \scrJ ;
3. unstable if | \lambda j | > 1 for some j = 1, 2, . . . ,\Pi \scrJ .

1Big O notation: f(x) = \scrO (g(x)) as x \rightarrow \infty if and only if there exist a positive real number M
and a real number x0 such that | f(x)| \leq Mg(x) for all x \geq x0.
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Proof. We only focus on the case when \sansA has a full set of U-eigentensors. It
follows from Propositions 3.5 and 4.5 that \sansA k =

\sum J1

j1=1 \cdot \cdot \cdot 
\sum JN

jN=1 \lambda 
k
j\sansW j1j1...jN jN for

some even-order square tensors \sansW j1j1...jN jN . Then the results follow immediately.

Corollary 5.2. Suppose that the HOSVD of \sansA is provided with n-mode singular
values. For an unforced MLTI system, the equilibrium point \sansX = \sansO is asymptotically
stable if the sum of the n-mode singular values square is less than one for any n.

Proof. Without loss of generality, suppose that n = 1. Based on Property 8 in

[10],
\sum J1

j=1(\gamma 
(1)
j )2 = \| \sansA \| 2 = \| \varphi (\sansA )\| 2. In addition, we know that the magnitude of the

maximal eigenvalue of a matrix is less than or equal to its Frobenius norm. Hence,
the proof follows immediately from Proposition 5.1.

Corollary 5.3. Suppose that the CPD of \sansA is provided and its factor matrices
A(n) and A(m) have all the column vectors orthonormal for at least one odd n and
even m. For an unforced MLTI system, the equilibrium point \sansX = \sansO is asymptotically
stable if the first weight element \lambda 1 < 1.

The proof of Corollary 5.3 is presented in Appendix B.3.

Corollary 5.4. Suppose that the TTD of \~\sansA \in \BbbR J1\times \cdot \cdot \cdot \times JN\times J1\times \cdot \cdot \cdot \times JN , defined in
Proposition 4.8, is provided with the first N  - 1 core tensors left-orthonormal and the
last N core tensors right-orthonormal. For an unforced MLTI system, the equilibrium

point \sansX = \sansO is asymptotically stable if the largest singular value of \=\~A(N) is less than

one, where \=\~A(N) = reshape(\~\sansA (N), RN - 1JN , RN ).

Proof. Based on the results of [23], the singular values of \=\~A(N) are the singular
values of \varphi (\sansA ). In addition, we know that the magnitude of the maximal eigenvalue
of a matrix is less than or equal to its largest singular value. Hence, the proof follows
immediately from Proposition 5.1.

Remark. Although Proposition 5.1 offers strong stability results for unforced
MLTI systems, computing U-eigenvalues usually requires an order of \scrO (\Pi 3

\scrJ ) number
of operations through tensor unfolding and matrix eigenvalue decomposition. To the
contrary, Corollaries 5.2 to 5.4 can be used to determine the stability of MLTI systems
much faster. In particular, if the TTD of \~\sansA is provided, the time complexity of left-
and right-orthonormalization is about \scrO (NJR3), assuming that Jn = J for all n, and
R is the average of the TT-ranks of \~\sansA [35]. Moreover, truncating the TT-rank \~RN of
\~\sansA would not alter the largest singular values of \=\~A(N). Therefore, setting \~RN = 1 and

computing the vector 2-norm of \=\~A(N) will return the largest singular value of \varphi (\sansA ).

5.2. Reachability. In this and the following subsections, we introduce the def-
initions of reachability and observability for MLTI systems which are similar to anal-
ogous concepts for the LTI systems [4, 21, 46]. We then establish sufficient and
necessary conditions for reachability and observability for MLTI systems.

Definition 5.5. The MLTI system (3.2) is said to be reachable on [t0, t1] if, given
any initial condition \sansX 0 and any final state \sansX 1, there exists a sequence of inputs \sansU t

that steers the state of the system from \sansX t0 = \sansX 0 to \sansX t1 = \sansX 1.

Theorem 5.6. The pair (\sansA ,\sansB ) is reachable on [t0, t1] if and only if the reachability
Gramian

(5.1) \sansW r(t0, t1) =

t1 - 1\sum 
t=t0

\sansA t1 - t - 1 \ast \sansB \ast \sansB \top \ast (\sansA \top )t1 - t - 1,

which is a weakly symmetric even-order square tensor, is U-positive definite.
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Proof. Suppose \sansW r(t0, t1) is U-positive definite, and let \sansX 0 be the initial state
and \sansX 1 be the desired final state. Choose \sansU t = \sansB \top \ast (\sansA \top )t1 - t - 1 \ast \sansW  - 1

r (t0, t1) \ast \sansV for
some constant tensor \sansV . It follows from the solution of the system (3.2) that \sansX t1 =

\sansA t1 \ast \sansX 0+
\sum t1 - 1

j=0 \sansA t1 - j - 1 \ast \sansB \ast \sansU t = \sansA t1 \ast \sansX 0+\sansW r(t0, t1)\ast \sansW  - 1
r (t0, t1)\ast \sansV = \sansA t1 \ast \sansX 0+\sansV .

Taking \sansV =  - \sansA t1 \ast \sansX 0 + \sansX 1, we have \sansX t1 = \sansX 1.
We show the converse by contradiction. Suppose \sansW r(t0, t1) is not U-positive

definite. Then there exists \sansX a \not = \sansO such that \sansX \top 
a \ast \sansA t1 - t - 1 \ast \sansB = \sansO for any t. Take

\sansX 1 = \sansX a+\sansA t1 \ast \sansX 0, and it follows that \sansX a+\sansA t1 \ast \sansX 0 = \sansA t1 \ast \sansX 0+
\sum t1 - 1

j=t0
\sansA t1 - j - 1\ast \sansB \ast \sansU j .

Multiplying from the left by \sansX \top 
a yields \sansX \top 

a \ast \sansX a =
\sum t1 - 1

j=t0
\sansX \top 
a \ast \sansA t1 - j - 1 \ast \sansB \ast \sansU j = 0,

which implies that \sansX a = \sansO , a contradiction.

Corollary 5.7. If the reachability Gramian \sansW r(t0, t1) is not M-positive definite,
the pair (\sansA ,\sansB ) is not reachable on [t0, t1].

Proof. The proof follows immediately from Proposition A.2 and Theorem 5.6.

The reachability Gramian assesses to what degree each state is affected by an
input [45]. The infinite horizon reachability Gramian can be computed from the
tensor Lyapunov equation, which is defined by

(5.2) \sansW r  - \sansA \ast \sansW r \ast \sansA \top = \sansB \ast \sansB \top .

By the unfolding property, if the pair (\sansA ,\sansB ) is reachable over an infinite horizon and all
the U-eigenvalues of \sansA have magnitude less than one, one can show that there exists a
unique weakly symmetric U-positive definite solution \sansW r. Solving the infinite horizon
reachability Gramian from the tensor Lyapunov equation may be computationally
intensive, so a tensor version of the Kalman rank condition is also provided.

Proposition 5.8. The pair (\sansA ,\sansB ) is reachable if and only if the J1 \times J1K1 \times 
\cdot \cdot \cdot \times JN \times JNKN even-order reachability tensor

(5.3) R =
\bigm| \bigm| \sansB \sansA \ast \sansB . . . \sansA \Pi \scrJ  - 1 \ast \sansB 

\bigm| \bigm| 
spans \BbbR J1\times J2\times \cdot \cdot \cdot \times JN . In other words, rankU (R) = \Pi \scrJ .

Proof. The proof follows from Proposition A.3 and the generalized Cayley--Hamil-
ton theorem discussed in the tensor eigenvalue problem.

First, any choice of construction for the mode row block tensor works for the
reachability tensor. Second, when N = 1, Proposition 5.8 simplifies to the famous
Kalman rank condition for reachability of LTI systems. The following corollaries
involving with HOSVD (multilinear ranks), CPD (CP rank), and TTD (TT-ranks)
provide useful necessary or sufficient conditions for reachability of MLTI systems if
the reachability tensor R is given in the HOSVD, CPD, or TTD format.

Corollary 5.9. Given the reachability tensor R in (5.3), if rank2n - 1(R) \not = Jn
for some n, the pair (\sansA ,\sansB ) is not reachable.

Proof. The proof follows immediately from Propositions 4.6 and 5.8.

Corollary 5.10. Given the reachability tensor R in (5.3), if the set of n-mode
singular values of R obtained from the HOSVD contains zero for odd n, the pair (\sansA ,\sansB )
is not reachable.

Proof. We know that the number of nonvanishing n-mode singular values is equal
to its corresponding n-mode multilinear rank. Hence, the result follows immediately
from Proposition 5.8 and Corollary 5.9.
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Corollary 5.11. Given the reachability tensor R in (5.3), if the CPD of R sat-
isfies (4.4) with CP rank equal to \Pi \scrJ , the pair (\sansA ,\sansB ) is reachable. Conversely, if the
pair (\sansA ,\sansB ) is reachable, then the CP rank of R is greater than or equal to \Pi \scrJ .

Proof. The first part of the proof follows immediately from Propositions 4.7
and 5.8. The second part of the proof follows from the fact that the CP rank of
a tensor is greater than or equal to its unfolding rank.

Corollary 5.12. Given the reachability tensor R in (5.3), the pair (\sansA ,\sansB ) is
reachable if and only if the N th optimal TT-rank of \~R \in \BbbR J1\times \cdot \cdot \cdot \times JN\times J1K1\times \cdot \cdot \cdot \times JNKN ,
defined in Proposition 4.8, is equal to \Pi \scrJ .

Proof. The proof follows immediately from Propositions 4.8 and 5.8.

Remark. Finding the unfolding rank of the reachability tensor R through ten-
sor unfolding and matrix QR decomposition is computationally expensive and has a
\scrO (\Pi 3

\scrJ \Pi \scrK ) time complexity. However, if the reachability tensor R is already given
in the tensor decomposition format, computing the unfolding rank can be achieved
efficiently based on Corollaries 5.10 to 5.12. Particularly, if the TTD of \~R is provided,
we do not need any additional computation to obtain the unfolding rank.

5.3. Observability. The results of observability can be simply obtained by the
duality principle, similarly to LTI systems.

Definition 5.13. The MLTI system (3.1) is said to be observable on [t0, t1] if
any initial state \sansX t0 = \sansX 0 can be uniquely determined by \sansY t on [t0, t1].

Theorem 5.14. The pair (\sansA ,\sansC ) is observable on [t0, t1] if and only if the observ-
ability Gramian

(5.4) \sansW o(t0, t1) =

t1 - 1\sum 
t=t0

(\sansA \top )t - t0 \ast \sansC \top \ast \sansC \ast \sansA t - t0 ,

which is a weakly symmetric even-order square tensor, is U-positive definite.

Proof. Suppose that \sansW o(t0, t1) is U-positive definite, and let \sansX 0 be the initial
state such that \sansY t = \sansC \ast \sansX t = \sansC \ast \sansA t - t0 \ast \sansX 0 for any t \in [t0, t1]. Multiplying from
the left by (\sansA \top )t - t0 \ast \sansC \top yields (\sansA \top )t - t0 \ast \sansC \top \ast \sansY t = (\sansA \top )t - t0 \ast \sansC \top \ast \sansC \ast \sansA t - t0 \ast \sansX 0,

which implies that
\sum t1 - 1

t=t0
(\sansA \top )t - t0 \ast \sansC \top \ast \sansY t =

\sum t1 - 1
t=t0

(\sansA \top )t - t0 \ast \sansC \top \ast \sansC \ast \sansA t - t0 \ast \sansX 0 =
\sansW o(t0, t1) \ast \sansX 0. Since \sansW o(t0, t1) is U-invertible, this equation has a unique solution

\sansX 0 = \sansW  - 1
o (t0, t1)

\sum t1 - 1
t=t0

(\sansA \top )t - t0 \ast \sansC \top \ast \sansY t. Hence, (\sansA ,\sansC ) is observable on [t0, t1].
Again, we show the converse by contradiction. Suppose that \sansW o(t0, t1) is not

U-positive definite. Then there exists \sansX a \not = \sansO such that \sansC \ast \sansA t - t0 \ast \sansX a = \sansO for any t.
Take \sansX t0 = \sansX 0+\sansX a for some initial state \sansX 0. Then \sansY t = \sansC \ast \sansA t - t0 \ast \sansX 0+\sansC \ast \sansA t - t0 \ast \sansX a =
\sansC \ast \sansA t - t0 \ast \sansX 0 for any t \in [t0, t1]. The initial states \sansX 0 and \sansX 0 +\sansX a produce the same
output, which implies that (\sansA ,\sansC ) is not observable on [t0, t1], a contradiction.

Corollary 5.15. If the observability Gramian \sansW o(t0, t1) is not M-positive defi-
nite, the pair (\sansA ,\sansC ) is not observable on [t0, t1].

The observability Gramian assesses to what degree each state affects future out-
puts [45]. The infinite horizon observability Gramian can be computed from the tensor
Lyapunov equation defined by

(5.5) \sansA \top \ast \sansW o \ast \sansA  - \sansW o =  - \sansC \top \ast \sansC .
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If the pair (\sansA ,\sansC ) is observable and all the U-eigenvalues of \sansA have magnitude less than
one, then there exists a unique weakly symmetric U-positive definite solution \sansW o.

The following results can be proved similarly to those in subsection 5.2.

Proposition 5.16. The pair (\sansA ,\sansC ) is observable if and only if the I1J1 \times J1 \times 
\cdot \cdot \cdot \times INJN \times JN even-order observability tensor

(5.6) O =
\bigm| \bigm| \sansC \sansC \ast \sansA . . . \sansC \ast \sansA \Pi \scrJ  - 1

\bigm| \bigm| \top 
spans \BbbR J1\times J2\times \cdot \cdot \cdot \times JN . In other words, rankU (O) = \Pi \scrJ .

Corollary 5.17. Given the observability tensor O in (5.6), if rank2n(O) \not = Jn
for some n, the pair (\sansA ,\sansC ) is not observable.

Corollary 5.18. Given the observability tensor O in (5.6), if the set of n-mode
singular values of O obtained from the HOSVD contains zero for even n, the pair
(\sansA ,\sansC ) is not observable.

Corollary 5.19. Given the observability tensor O in (5.6), if the CPD of O

satisfies (4.4) with CP rank equal to \Pi \scrJ , the pair (\sansA ,\sansC ) is observable. Conversely, if
the pair (\sansA ,\sansC ) is observable, then the CP rank of O is greater than or equal to \Pi \scrJ .

Corollary 5.20. Given the observability tensor O in (5.6), the pair (\sansA ,\sansC ) is
observable if and only if the N th optimal TT-rank of \~O \in \BbbR I1J1\times \cdot \cdot \cdot \times INJN\times J1\times \cdot \cdot \cdot \times JN ,
defined in Proposition 4.8, is equal to \Pi \scrJ .

6. Model reduction for MLTI systems. Based on the observations in sec-
tion 5, it is more natural to manipulate MLTI systems in the tensor decomposition
format so that all the computational advantages can be realized. This may also result
in a more compressed representation.

6.1. Generalized CPD/TTD. We first introduce the notion of generalized
CPD/TTD for even-order paired tensors described in [17], in which the generalized
CPD can also be viewed as the extension of the Kronecker rank approximation pro-
posed by Van Loan [52]. Generalized CPD and TTD share a similar format and
possess many analogous properties.

Definition 6.1. Given an even-order paired tensor \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN , the
generalized CPD of \sansA is given by

(6.1) \sansA =

R\sum 
r=1

\sansA (1)
r:: \circ \sansA (2)

r:: \circ \cdot \cdot \cdot \circ \sansA (N)
r:: ,

where \sansA (n) \in \BbbR R\times Jn\times In . Extending Van Loan's definition [52], we call the smallest R
that achieves (6.1) the Kronecker rank of \sansA .

Definition 6.2. Given an even-order paired tensor \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN , the
generalized TTD of \sansA is given by

(6.2) \sansA =

R0\sum 
r0=1

\cdot \cdot \cdot 
RN\sum 

rN=1

\sansA (1)
r0::r1 \circ \sansA 

(2)
r1::r2 \circ \cdot \cdot \cdot \circ \sansA 

(N)
rN - 1::rN ,

where \sansA (n) \in \BbbR Rn - 1\times Jn\times In\times Rn , and \{ R0, R1, . . . , RN\} is the set of TT-ranks with
R0 = RN = 1.
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Please refer to Appendix D.1 for the use of ``:"" notation. Given two even-
order paired tensors in the generalized CPD/TTD format, the Einstein product (2.4)
between the two can be computed without having to reconstruct the full tensors,
i.e., keeping the original format [17]. The following proposition states the case for
generalized CPD, which also applies to generalized TTD.

Proposition 6.3. Given two even-order paired tensors \sansA \in \BbbR J1\times K1\times \cdot \cdot \cdot \times JN\times KN

and \sansB \in \BbbR K1\times I1\times \cdot \cdot \cdot \times KN\times IN in the format of (6.1) with Kronecker ranks R and S,
respectively, the Einstein product \sansA \ast \sansB is given by

(6.3) \sansA \ast \sansB =

T\sum 
t=1

\sansE 
(1)
t:: \circ \sansE (2)

t:: \circ \cdot \cdot \cdot \circ \sansE (N)
t:: ,

where \sansE 
(n)
t:: = \sansA 

(n)
r:: \sansB 

(n)
s:: \in \BbbR Jn\times In , and t = ivec(\{ r, s\} , \{ R,S\} ) with T = RS.

Remark. The computational complexity of the Einstein product (6.3) is about
\scrO (NJ3R2), assuming that Jn = In = Kn = J and R = S, which is much lower than
\scrO (J3N ) from the Einstein product (2.4) if R is small.

The generalized CPD can be recovered from the standard CPD, and similarly
for generalized TTD (see Algorithm C.1). The algorithm below is extended from the
results by Van Loan [52] about the Kronecker rank approximation. Thus, one can
easily obtain generalized CPD by using any technique for computing the standard
CPD, including alternating least square (ALS) and modified ALS methods [24, 25].

Algorithm 6.1 Generalized CPD.

1: Given an even-order paired tensor \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN

2: Set \v \sansA = reshape(\sansA , J1I1, J2I2, . . . , JNIN )

3: Apply CPD algorithms on \v \sansA such that \v \sansA =
\sum R

r=1 \lambda ra
(r)
1 \circ a(r)2 \circ \cdot \cdot \cdot \circ a(r)N

4: Set \sansA 
(n)
r:: = \lambda 

1
N
r reshape(a

(r)
n , Jn, In) for n = 1, 2, . . . , N

5: return Component tensors \sansA (n) for n = 1, 2, . . . , N

6.2. MLTI model reduction. The problem of model reduction has been stud-
ied heavily in the framework of classical control [13, 16, 34]. Methods including
proper orthogonal decomposition (POD), scale-separation and averaging, and bal-
anced truncation are applied in many engineering applications when dealing with
high-dimensional linear/nonlinear systems [33]. As mentioned in section 3, using gen-
eralized CPD/TTD, we propose a new MLTI representation with fewer parameters.
Note that we omit colons in each component tensor in this and the following subsec-

tions for simplicity (e.g., \sansA 
(n)
r = \sansA 

(n)
r:: ).

Proposition 6.4. The MLTI system (3.2) is equivalent to

(6.4)

\left\{           
\sansX t+1 =

R1\sum 
r=1

\sansX t \times \{ \sansA (1)
r , . . . ,\sansA (N)

r \} +
R2\sum 
r=1

\sansU t \times \{ \sansB (1)
r , . . . ,\sansB (N)

r \} ,

\sansY t =

R3\sum 
r=1

\sansX t \times \{ \sansC (1)
r , . . . ,\sansC (N)

r \} ,

where R1, R2, R3 are the Kronecker ranks of the system, and \sansA (n) \in \BbbR R1\times Jn\times Jn ,
\sansB (n) \in \BbbR R2\times Jn\times Kn , and \sansC (n) \in \BbbR R3\times In\times Jn .
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Proof. The proof follows from Definition 6.1 and Proposition 3.3.

Remark. The number of parameters of the MLTI system representation (6.4) is

R1

\sum N
n=1 J

2
n+R2

\sum N
n=1 JnKn+R3

\sum N
n=1 InJn. If the Kronecker ranks R1, R2, R3 are

relatively small, the total number of parameters is much less than that of the MLTI
system model (3.2), which is given by

\prod N
n=1 J

2
n +

\prod N
n=1 JnKn +

\prod N
n=1 InJn.

The MLTI system representation (6.4) is attractive for systems captured by sparse
tensors or tensors with low Kronecker ranks where the two advantages, model reduc-
tion and computational efficiency, can be exploited. In particular, if \sansA , \sansB , and \sansC 
are fourth-order paired tensors, the generalized CPDs are reduced to matrix SVD
problems; see section 9.2 in [52]. However, there are two major drawbacks. First,
for N > 2, there is no exact method to compute the Kronecker rank of a tensor [25],
and truncating the rank does not ensure a good estimate. Second, current CPD al-
gorithms are not numerically stable, which could result in ill-conditioning during the
tensor decomposition and low rank approximation. One way to fix these issues is to
replace generalized CPD by generalized TTD in (6.4), which takes a similar form. The
algorithms for computing generalized TTD are numerically stable with unique opti-
mal TT-ranks [35]. Most importantly, the TTD-based results obtained in section 5
can be realized in the form of (6.4). For example, we can determine the stability of
MLTI systems from the TTD of \~\sansA defined in Proposition 4.8, which can be obtained
from the generalized TTD of \sansA efficiently (similar to the remark in subsection 4.3).

Recall from section 3 that one can always convert the MLTI system (3.2) to an
equivalent LTI form and then apply traditional model reduction approaches, e.g.,
balanced truncation. However, after converting to a matrix form, the low tensor rank
structure exploited in the form of (6.4) may not be preserved, and thus low memory
requirements cannot be achieved; see subsection 7.3. Furthermore, as shown in [7], the
MLTI system (6.4) can be used to further develop a higher-order balanced truncation
framework directly in the TTD format, which can provide additional computation
and memory benefits over unfolding-based model reduction methods.

6.3. Explicit solution and stability. In addition to using tensor decomposi-

tions, we can exploit matrix calculations of the factor matrices \sansA 
(n)
r to develop notions

including explicit solution and stability for the MLTI system (6.4) which also have
lower computational costs compared to unfolding based methods.

Proposition 6.5 (solution). For an unforced MLTI system \sansX t+1 =
\sum R1

r=1 \sansX t \times 
\{ \sansA (1)

r ,\sansA 
(2)
r , . . . ,\sansA 

(N)
r \} , the solution for \sansX at time k, given initial condition \sansX 0, is

(6.5) \sansX k =

Rk
1\sum 

r=1

\sansX 0 \times \{ \=\sansA (1)
r , \=\sansA (2)

r , . . . , \=\sansA (N)
r \} ,

where \=\sansA 
(n)
r = \sansA 

(n)
r1 \sansA 

(n)
r2 . . .\sansA 

(n)
rk for r = ivec(\{ r1, r2, . . . , rk\} , \{ R1, R1, k. . ., R1\} ).

Proof. The result follows immediately from Propositions 3.3 and 6.3.

If the Kronecker rank R1 is small, computing the explicit solution using (6.5)
can be faster than using the Einstein product (2.4). Additionally, we can assess the
stability of the unforced MLTI system of (6.4) based upon the Lyapunov approach.

Proposition 6.6 (stability). For the unforced MLTI system of (6.4), the equi-
librium point \sansX = \sansO is

1. stable (in the sense of Lyapunov) if
\sum R1

r=1

\prod N
n=1 \alpha 

(n)
r = 1;
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2. asymptotically stable (in the sense of Lyapunov) if
\sum R1

r=1

\prod N
n=1 \alpha 

(n)
r < 1,

where \alpha 
(n)
r denote the largest singular values of \sansA 

(n)
r .

Proof. Let's consider V (\sansX ) = \| \sansX \| as the Lyapunov function candidate, and let

f(\sansX ) =
\sum R1

r=1 \sansX \times \{ \sansA (1)
r ,\sansA 

(2)
r , . . . ,\sansA 

(N)
r \} . Then it follows that V (f(\sansX ))  - V (\sansX ) =

\| 
\sum R1

r=1 \sansX \times \{ \sansA (1)
r ,\sansA 

(2)
r , . . . ,\sansA 

(N)
r \} \|  - \| \sansX \| \leq 

\sum R1

r=1 \| \sansX \times \{ \sansA (1)
r ,\sansA 

(2)
r , . . . ,\sansA 

(N)
r \} \|  - \| \sansX \| \leq 

(
\sum R1

r=1

\prod N
n=1 \alpha 

(n)
r  - 1)\| \sansX \| , where the last inequality is based on Theorem 6 in [20].

Then the results follow immediately.

Remark. The computational complexity of finding the matrix SVDs of the factor
matrices can be estimated as \scrO (NJ3R1), assuming that Jn = J for all n.

When all the Kronecker ranks of the system R1 = R2 = R3 = 1, the MLTI system
(6.4) reduces to the Tucker product representation proposed by Surana, Patterson,
and Rajapakse [51], which provides a more direct way to see that the Tucker-based
MLTI model is only a special case of the MLTI system (3.2). Additionally, we can
obtain stronger stability conditions for the unforced MLTI system in this case.

Proposition 6.7 (stability). Suppose that R1 = 1 in (6.4), and \rho (n) are the

spectral radii of \sansA 
(n)
1 . Then the unforced MLTI system of (6.4) is

1. stable if and only if
\prod N

n=1 \rho 
(n) \leq 1, and when

\prod N
n=1 \rho 

(n) = 1, their corre-
sponding eigenvalues must have equal algebraic and geometric multiplicity;

2. asymptotically stable if
\prod N

n=1 \rho 
(n) < 1;

3. unstable if
\prod N

n=1 \rho 
(n) > 1.

Proof. Based on (2.25) in [40], \varphi (\sansA ) = \sansA 
(N)
1 \otimes \sansA 

(N - 1)
1 \otimes \cdot \cdot \cdot \otimes \sansA 

(1)
1 , where the

operation \otimes denotes the Kronecker product. Moreover, the U-eigenvalues of \sansA are

equal to the products of eigenvalues of these component matrices \sansA 
(n)
1 , and the U-

eigenvalues have equal algebraic and geometric multiplicities if and only if the factor
eigenvalues have equal multiplicities [5]. Then the results follow immediately from
Proposition 5.1.

The above results including Propositions 6.4 to 6.6 can be reformulated by re-
placing the Kronecker rank summation by a series of TT-rank summations if \sansA , \sansB ,
and \sansC are given in the generalized TTD format. Finally, the Kronecker product can
be used to unfold the MLTI system (6.4) into an LTI system, i.e.,

\varphi (\sansA ) =
R1\sum 
r=1

\sansA (N)
r \otimes \sansA (N - 1)

r \otimes \cdot \cdot \cdot \otimes \sansA (1)
r ,

and similarly for \varphi (\sansB ) and \varphi (\sansC ). Hence, one can apply traditional control theory
techniques to determine the MLTI system properties.

7. Numerical examples. We provide four examples to illustrate the MLTI
systems theory and model reduction using the techniques developed above. All the
numerical examples presented were performed on a Linux machine with 8 GB RAM
and a 2.4 GHz Intel Core i5 processor and were conducted in MATLAB R2018a with
Tensor Toolbox 2.6 [1] and the TT toolbox [36].

7.1. Reachability and observability tensors. In this example, we consider
a simple single-input and single-output (SISO) system that is given by (3.1) with

A1 =

\left[  0 1 0
0 0 1
0.2 0.5 0.8

\right]  , A2 =

\biggl[ 
0 1
0.5 0

\biggr] 
,
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B1 =

\left[  00
1

\right]  , B2 =

\biggl[ 
0
1

\biggr] 
,

C1 =
\bigl[ 
1 0 0

\bigr] 
, C2 =

\bigl[ 
1 0

\bigr] 
,

and the states \sansX t \in \BbbR 3\times 2 are second-order tensors, i.e., matrices. The product of
the two spectral radii of A1 and A2 is 0.9207, which implies that the system is
asymptotically stable. In addition, the reachability and observability tensors based
on (5.3) and (5.6) are given by

R::11 =

\left[  0 0 0
0 1 0
0 0.8 0

\right]  , R::21 =

\left[  0 0 0.5
0 0 0.4
1 0 0.57

\right]  ,

R::12 =

\left[  0.4 0 0.378
0.57 0 0.4849
0.756 0 0.6339

\right]  , R::22 =

\left[  0 0.285 0
0 0.378 0
0 0.4849 0

\right]  
and

O::11 =

\left[  1 0 0
0 0 0
0 0 0.5

\right]  , O::21 =

\left[  0 0 0
0.04 0.15 0.285
0 0 0

\right]  ,

O::12 =

\left[  0 0 0
0 1 0
0 0 0

\right]  , O::22 =

\left[  0.1 0.25 0.4
0 0 0

0.057 0.1825 0.378

\right]  ,

respectively. We compute the TTDs of the permuted tensors \~R and \~O, respectively,
and observe that rankU (R) = 6 and rankU (O) = 6. The system therefore is both
reachable and observable.

7.2. Kronecker rank/TT-rank approximation. In this example, we con-
sider a SISO MLTI system (3.2) with random sparse tensors \sansA \in \BbbR 3\times 3\times 3\times 3\times 3\times 3,
\sansB \in \BbbR 3\times 3\times 3, and \sansC \in \BbbR 3\times 3\times 3. According to Algorithm 6.1, we compute the general-
ized CPDs of \sansA , \sansB , and \sansC using the tensor toolbox function cp als with estimated
Kronecker ranks R1 = 49, R2 = 2, and R3 = 2, respectively; see ``Generalized CPD""
in Table 1. Note that the number of parameters in the system with full Kronecker
ranks could be greater than that for the original system. We then fix R2 and R3 and
gradually truncate R1, since R1 is most critical in determining the number of param-
eters of the reduced system. As we can see in the table, the number of parameters
decreases dramatically as R1 decreases. In order to assess the approximation error re-
sulting from this truncation, we compute the relative error using the \scrH -infinity norm
\| \cdot \| \infty between the full system and reduced system transfer functions based on (3.3).
In particular, we find that when R1 = 10, the reduced MLTI system is still close to
the original system with \scrH -infinity norm relative error of 0.0888.

We repeat a similar process for TT-rank approximation through generalized TTD
(see Algorithm C.1). The results are shown in the same table. We find that both
generalized CPD and TTD can achieve efficient model reduction while keeping the
approximation errors low. Generalized TTD in particular achieves better accuracy
for a similar number of reduced parameters as compared to generalized CPD, but the
latter can maintain a reasonable approximation error with an even lower number of
parameters. The Bode diagrams for the reduced MLTI systems are shown in Figure 2.
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Table 1
Kronecker rank/TT-rank approximations of the MLTI system. We omit the first and last trivial

TT-ranks in the generalized TTDs of \sansA , \sansB , and \sansC .

Reduced ranks \# Parameters
\| \sansG full - \sansG red\| \infty 

\| \sansG full\| \infty 
Full system - 783 -

Generalized CPD

49, 2, 2

20, 2, 2

10, 2, 2

1359

576

306

1.58\times 10 - 10

0.0223

0.0888

Generalized TTD

\{ 7, 8\} , \{ 1, 2\} , \{ 2, 2\} 
\{ 7, 6\} , \{ 1, 2\} , \{ 2, 2\} 
\{ 7, 5\} , \{ 1, 2\} , \{ 2, 2\} 

678

534

462

4.39\times 10 - 15

0.0099

0.4911

Fig. 2. Bode diagrams. \sansG 1, \sansG 2, and \sansG 3 are the transfer functions for the three reduced MLTI
systems corresponding to Table 1, respectively. One may view \sansG 1 as the transfer function of the
original system. Since the function cp als is not numerically stable, the results may not be exactly
consistent with Table 1 for those obtained by generalized CPD.

Note that in this example, we manually selected the truncation to study the tradeoff
between number of parameters in the reduced system and the approximation error.

7.3. Memory consumption comparison. In this example, we consider a
multiple-input and multiple-output (MIMO) MLTI system (3.2) with random even-
order paired tensors \sansA ,\sansB ,\sansC \in \BbbR 6\times 6\times 6\times 6\times 6\times 6 that possess low TT-ranks. We compare
the memory consumptions of the generalized TTD-based representation (6.4) with the
reduced models obtained from the unfolding-based balanced truncation. The results
are shown in Table 2. One can clearly see that if the MLTI systems possess low TT-
rank structure, the generalized TTD-based approach achieves much better accuracy
for a similar number of parameters as compared to balanced truncation.
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Table 2
Memory consumption comparison between methods based on generalized TTD and balanced

truncation methods. We reported the TT-ranks of \sansA , \sansB , and \sansC (ignoring the first and last trivial
TT-ranks) and the number of singular values retained in the Hankel matrix during the balanced
truncation.

Ranks \# Parameters
\| \sansG full - \sansG red\| \infty 

\| \sansG full\| \infty 
Full system - 139968 -

Generalized TTD \{ 6,6\} , \{ 6,6\} , \{ 6,6\} 5184 3.98\times 10 - 15

Balanced truncation

200

100

40

120000

30000

4800

0.0169

0.1001

0.2360

Table 3
Run time comparison between the TTD- and SVD-based methods in finding the largest singular

value of \varphi (\sansA ). For the TTD-based method, the reported computational time includes conversion
from the generalized TTD of \sansA to the TTD of \~\sansA and left- and right-orthonormalization.

n TTD(s) SVD(s) \sigma max Relative error Stability

6 0.0399 6.8551\times 10 - 4 0.8082 1.3738\times 10 - 16 asy. stable

8 0.0491 0.0439 0.9626 4.1523\times 10 - 15 asy. stable

10 0.0591 0.4979 0.8645 3.8527\times 10 - 15 asy. stable

12 0.0909 30.7663 0.8485 5.7573\times 10 - 15 asy. stable

14 0.2623 2115.1 0.9984 1.3566\times 10 - 14 asy. stable

7.4. Computational time comparison. In this example, we consider unforced

MLTI systems (6.4) with random sparse even-order paired tensors \sansA \in \BbbR 2\times 2\times n\cdot \cdot \cdot \times 2\times 2

in the generalized TTD format such that \varphi (\sansA ) \in \BbbR 2n\times 2n . We compare the run time of
Corollary 5.4 with the matrix SVD of \varphi (\sansA ) for determining the stability of the systems.
The results are shown in Table 3. When n \geq 10, the TTD-based method for finding
the largest singular value of \varphi (\sansA ) exhibits a significant time advantage compared to
the matrix SVD--based method for which the time increases exponentially.

8. Discussion. While tensor unfolding to a matrix form provides the advan-
tage of leveraging highly optimized matrix algebra libraries, in doing so, however,
one may not be able to exploit the higher-order hidden patterns/structures, e.g., re-
dundancy/correlations, present in the tensor. For instance, in the context of solving
PDEs, Brazell et al. [3] found that higher-order tensor representations preserve low
bandwidth, thereby keeping the computational cost and memory requirement low. As
shown in subsections 7.3 and 7.4, TTD-based methods are more efficient in terms of
computational speed and memory requirements compared to unfolding-based meth-
ods when the MLTI systems have low TT-rank structure. Although CPD typically
offers better compression than TTD, the computation of CP rank is NP-hard, and the
lower rank approximations can be ill-posed [11]. TTD is more suitable for numerical
computations with well-developed TT-algebra [35]. Basic tensor operations such as
addition, the Einstein product, the Frobenius norm, block tensor, solution to multi-
linear equations, and tensor pseudoinverse can be computed and maintained in the
TTD format, without requiring full tensor representation. This can provide signifi-
cant computational advantages in finding the reachability/observability tensors and
associated unfolding ranks according to Corollaries 5.12 and 5.20, and in obtaining
the solution of the tensor Lyapunov equations. For details, we refer the reader to [7]
and the references therein.
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Another line of approach is to exploit the isomorphism property to build algo-
rithms directly in the full tensor format from existing methods. For example, Brazell
et al. [3] proposed the higher-order biconjugate gradient (HOBG) method for solving
multilinear systems which can be used for computing U-inverses and MLTI system
transfer functions. Analogously, one can generalize the matrix-based Rayleigh quo-
tient iteration method for computing U-eigenvalues (which can be used for determin-
ing MLTI system stability) directly in tensor form; see Algorithm C.2. However, the
computational efficiency of this type of method remains to be investigated. Finally,
one can explore hybrid methods by combining tensor algebra--based and matrix-based
methods to provide the advantages of both approaches; see some examples in [7] in
the context of MLTI model reduction. In the future, it would be worthwhile to sys-
tematically explore which of the above-mentioned approaches or combination thereof
is best given the problem structure.

9. Conclusion. In this paper, we provided a comprehensive treatment of a
newly introduced MLTI system representation using even-order paired tensors and
the Einstein product. We established new results which enable one to express tensor
unfolding--based stability, reachability, and observability criteria in terms of more stan-
dard notions of tensor ranks/decompositions. We introduced a generalized CPD/TTD-
based model reduction framework which can significantly reduce the number of MLTI
system parameters and realize the tensor decomposition--based methods. We also pre-
sented computational complexity analysis of our proposed framework and illustrated
the benefits through numerical examples. In particular, TTD offers several computa-
tional advantages over CPD and HOSVD and provides a good representational choice
for facilitating numerical computations associated with MLTI systems.

As mentioned in section 8, more work is required to fully realize the potential
of tensor algebra--based computations for MLTI systems. It will also be worthwhile
to develop theoretical and computational frameworks for observer and feedback con-
trol design for MLTI systems, and to apply these techniques in real world complex
systems. One particular application we plan to investigate is that of cellular repro-
gramming, which involves introducing transcription factors as a control mechanism
to transform one cell type to another. These systems naturally have matrix or tensor
state spaces describing their genome-wide structure and gene expression [31, 44]. Such
applications would also need to account for nonlinearity and stochasticity in tensor-
based dynamical system representation and analysis framework and is an important
direction for future research.

Appendix A. Additional tensor algebra.

A.1. M-positive definiteness/rank-one positive definiteness.

Definition A.1. An even-order square tensor \sansA \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN is called
M-positive definite if the multilinear functional

(A.1) \sansA \times \{ x\top 1 ,x\top 1 , . . . ,x\top N ,x\top N\} > 0

for any nonzero vector xn. If all xn are equal, \sansA is called rank-one positive definite.

Proposition A.2. If an even-order square tensor \sansA \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN is U-
positive definite, it is M-positive definite. Moreover, if J1 = J2 = \cdot \cdot \cdot = JN , U-positive
definiteness also implies rank-one positive definiteness.

Proof. By Lemma 3.2, it follows that \sansA \times \{ x\top 
1 ,x

\top 
1 , . . . ,x

\top 
N ,x\top 

N\} = \sansX \top \ast \sansA \ast \sansX for
\sansX = x1 \circ x2 \circ \cdot \cdot \cdot \circ xN , i.e., \sansX is a rank-one tensor. Moreover, if J1 = J2 = \cdot \cdot \cdot = JN , M-
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positive definiteness implies rank-one positive definiteness [39]. Therefore, the results
follow immediately.

A.2. Block tensor properties.

Proposition A.3. Let \sansA ,\sansB \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN and \sansC ,\sansD \in \BbbR I1\times K1\times \cdot \cdot \cdot \times IN\times KN .
Then the following properties hold:

1. \scrP \ast 
\bigm| \bigm| \sansA \sansB 

\bigm| \bigm| 
n
=
\bigm| \bigm| \sansP \ast \sansA \sansP \ast \sansB 

\bigm| \bigm| 
n
for any \sansP \in \BbbR L1\times J1\times \cdot \cdot \cdot \times LN\times JN ;

2.
\bigm| \bigm| \bigm| \bigm| \sansC \sansD 
\bigm| \bigm| \bigm| \bigm| 
n
\ast \sansQ =

\bigm| \bigm| \bigm| \bigm| \sansC \ast \sansQ 
\sansD \ast \sansQ 

\bigm| \bigm| \bigm| \bigm| 
n
for any \sansQ \in \BbbR K1\times R1\times \cdot \cdot \cdot \times KN\times RN ;

3.
\bigm| \bigm| \sansA \sansB 

\bigm| \bigm| 
n
\ast 
\bigm| \bigm| \bigm| \bigm| \sansC \sansD 
\bigm| \bigm| \bigm| \bigm| 
n
= \sansA \ast \sansC + \sansB \ast \sansD .

Proof. The proof follows immediately from the definition of n-mode row/column
block tensors and the Einstein product.

Proposition A.4. Let \sansA ,\sansB \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN be two even-order paired tensors.
Then \varphi (

\bigm| \bigm| \sansA \sansB 
\bigm| \bigm| 
n
) =

\bigl[ 
\varphi (\sansA ) \varphi (\sansB )

\bigr] 
P, where P is a column permutation matrix. In

particular, when In = 1 for all n or n = N , P is the identity matrix.

Proof. We consider the case for N = 2. Since the size of the odd modes of the
block tensor remains the same, we only need to consider the even modes' unfolding
transformation. When n = 1, the index mapping function for the even modes is

ivec(i, \scrI ) = i1 + 2(i2  - 1)I1

for i1 = 1, 2, . . . , 2I1. Based on the definition of n-mode row block tensors, the first I1
columns of \varphi (

\bigm| \bigm| \sansA \sansB 
\bigm| \bigm| 
1
) are the vectorizations of \sansA :i1:i2 for i1 = 1, 2, . . . , I1 and i2 = 1,

and the second I1 columns are the vectorizations of \sansB :i1:i2 for i1 = I1+1, I1+2, . . . , 2I1
and i2 = 1. The alternating pattern continues for all I2 pairs of I1 columns. Hence,
\varphi (
\bigm| \bigm| \sansA \sansB 

\bigm| \bigm| 
1
) =

\bigl[ 
\varphi (\sansA ) \varphi (\sansB )

\bigr] 
P for some column permutation matrix P. When n = 2,

the index mapping function for the even modes is given by

ivec(i, \scrI ) = i1 + (i2  - 1)I1

for i2 = 1, 2, . . . , 2I2. Similarly, the first I1I2 columns of \varphi (
\bigm| \bigm| \sansA \sansB 

\bigm| \bigm| 
2
) are the vectoriza-

tions of \sansA :i1:i2 for i1 = 1, 2, . . . , I1 and i2 = 1, 2, . . . , I2, and the second I1I2 columns
are the vectorizations of \sansB :i1:i2 for i1 = 1, 2, . . . , I1 and i2 = I2 + 1, I2 + 2, . . . , 2I2.
Hence, \varphi (

\bigm| \bigm| \sansA \sansB 
\bigm| \bigm| 
2
) =

\bigl[ 
\varphi (\sansA ) \varphi (\sansB )

\bigr] 
. A similar analysis can be used to prove the

case for N > 2. Moreover, when In = 1 for all n, \varphi (\sansA ) and \varphi (\sansB ) are vectors, so no
permutation needs to be considered. The proposition can be considered as a special
case of Theorem 3.3 in [40].

Appendix B. Tensor ranks/decompositions proofs.

B.1. Proof of Proposition 4.6. Without loss of generality, assume that \Pi \scrI \leq 
\Pi \scrJ and rankU (\sansA ) = \Pi \scrI . Then \varphi (\sansA ) has \Pi \scrI linearly independent columns. The
goal here is to construct a transformation from \varphi (\sansA ) to A\top 

(2n), which can be easily
visualized through the representation (z,\BbbS ) defined in (2.2). Let

\BbbS 1 =
\Bigl( 
1 2 . . . N N + 1 N + 2 . . . 2N
1 3 . . . 2N  - 1 2 4 . . . 2N

\Bigr) 
,

\BbbS 2 =
\Bigl( 
1 2 . . . 2n - 1 2n . . . 2N  - 1 2N
1 2 . . . 2n - 1 2n+ 1 . . . 2N 2n

\Bigr) 
,
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\BbbS 3 =
\Bigl( 
1 2 . . . N N + 1 N + 2 . . . N + n N + n+ 1 . . . 2N
1 3 . . . 2N  - 1 2n 2 . . . 2n - 2 2n+ 2 . . . 2N

\Bigr) 
,

\BbbS 4 =
\Bigl( 
1 2 . . . N N + 1 . . . N + n - 1 N + n . . . 2N  - 1 2N
1 3 . . . 2N  - 1 2 . . . 2n - 2 2n+ 2 . . . 2N 2n

\Bigr) 
.

Clearly, \varphi (\sansA ) and A\top 
(2n) can be represented by (N, \BbbS 1) and (2N  - 1,\BbbS 2), respectively.

According to the definition of the index mapping function ivec(i, \scrI ), we first require
a column permutation matrix P such that \varphi (\sansA )P is represented by (N, \BbbS 3). Ev-
ery In columns of \varphi (\sansA )P correspond to the columns of A\top 

(2n). Collect each set of

In columns of \varphi (\sansA )P and stack them vertically to form a tall matrix \~A with the
representation (2N  - 1,\BbbS 4). Since the columns of \varphi (\sansA )P are linearly independent,
rank( \~A) = In. Finally, according to the definition of the index mapping function
ivec(j,\scrJ ), we require a row permutation matrix Q such that Q \~A = A\top 

(2n). Hence,

rank2n(\sansA ) = rank(A\top 
(2n)) = In. Note that the converse of the statement is incorrect.

B.2. Proof of Proposition 4.7. In order to prove Proposition 4.7, we need to
introduce the concept of the Khatri--Rao product.

Definition B.1. Given two matrices A \in \BbbR J\times I and B \in \BbbR K\times I , the Khatri--Rao
product, denoted by A\odot B, results in a JK \times I matrix:

A\odot B =
\bigl[ 
a1 \otimes b1 a2 \otimes b2 . . . aI \otimes bI

\bigr] 
,

where \otimes denotes the Kronecker product, and an and bn are the column vectors of A
and B, respectively.

The following lemma, provided by Sidiropoulos et al. [48, 49] gives some properties
of rank and k-rank of the Khatri--Rao product A\odot B.

Lemma B.2. Given two matrices A \in \BbbR J\times R,B \in \BbbR I\times R, the Khatri--Rao product
A \odot B has column rank R if kA + kB \geq R + 1 for kA, kB \geq 1. Moreover, kA\odot B \geq 
min \{ kA + kB  - 1, R\} .

Proposition B.3. Given matrices A(n) \in \BbbR Jn\times R, the Khatri--Rao product A(1)\odot 
A(2) \odot \cdot \cdot \cdot \odot A(N) has column rank R if

\sum N
n=1 kA(n) \geq R+N  - 1 for kA(n) \geq 1.

Proof. Suppose that N = 3. By Lemma B.2, the Khatri--Rao product A(1) \odot 
A(2) \odot A(3) has full column rank R if kA(1)\odot A(2) + kA(3) \geq R+1. Since we know that
kA\odot B \geq min \{ kA + kB  - 1, R\} , the above inequality can be satisfied if

min \{ kA(1) + kA(2)  - 1, R\} + kA(3) \geq R+ 1.

When kA(1) + kA(2) > R+1, the condition is reduced to kA(3) \geq 1, and when kA(1) +
kA(2) \leq R + 1, the condition becomes kA(1) + kA(2) + kA(3) \geq R + 2. Therefore, the

Khatri--Rao productA(1)\odot A(2)\odot A(3) has full column rank R if kA(1)+kA(2)+kA(3) \geq 
R+ 2. The result can be easily extended to n = N using the same approach.

Now, we can prove Proposition 4.7. Suppose that \sansA has the CPD format (4.2)
with CP rank equal to R. Applying the unfolding transformation \varphi yields

\varphi (\sansA ) = (A(2N - 1) \odot \cdot \cdot \cdot \odot A(1))S(A(2N) \odot \cdot \cdot \cdot \odot A(2))\top ,

where S \in \BbbR R\times R is a diagonal matrix containing the weights of the CPD on its
diagonal. By Proposition B.3, the two Khatri--Rao products A(2N - 1) \odot \cdot \cdot \cdot \odot A(1)
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and A(2N) \odot \cdot \cdot \cdot \odot A(2) have full column rank R if the two conditions
\sum 2N

n=1:2 kA(n) \geq 
R+N  - 1 and

\sum 2N
n=2:2 kA(n) \geq R+N  - 1 are satisfied. Hence, rankU (\sansA ) = R. Note

that we do not require the CPD of \sansA to be unique in the statement.

B.3. Proof of Corollary 5.3. The proof is formulated similarly to the one
above. We need to use the properties of the Khatri--Rao product.

Lemma B.4. Given matrices A(n) \in \BbbR Jn\times R, the Khatri--Rao product A(1) \odot 
A(2) \odot \cdot \cdot \cdot \odot A(N) has all the column vectors orthogonal if at least one of A(n) has all
the column vectors orthogonal for n = 1, 2, . . . , N .

Proof. Suppose that N = 2. Based on the properties of the Kronecker product,

for any 1 \leq n,m \leq R, the inner product between a
(1)
n \otimes a

(2)
n and a

(1)
m \otimes a

(2)
m is given

by

(a(1)n \otimes a(2)n )\top (a(1)m \otimes a(2)m ) = ((a(1)n )\top a(1)m ))\otimes ((a(2)n )\top a(2)m )).

Therefore, if A(1) or A(2) has all column vectors orthogonal, then the inner product

between a
(1)
n \otimes a

(2)
n and a

(1)
m \otimes a

(2)
m is zero for any n,m.

Now we can prove Corollary 5.3. Suppose that \sansA has the CPD format (4.2).
Applying the unfolding transformation \varphi yields

\varphi (\sansA ) = (A(2N - 1) \odot \cdot \cdot \cdot \odot A(1))S(A(2N) \odot \cdot \cdot \cdot \odot A(2))\top ,

where S \in \BbbR R\times R is a diagonal matrix containing the weights of the CPD on its
diagonal. By Lemma B.4, the two Khatri--Rao products A(2N - 1) \odot \cdot \cdot \cdot \odot A(1) and
A(2N) \odot \cdot \cdot \cdot \odot A(2) have all the column vectors orthonormal if A(n) and A(m) have
all the column vectors orthonormal for at least one odd n and even m. Thus, \lambda 1 will
be the largest singular value of \varphi (\sansA ). In addition, we know that the magnitude of
the maximal eigenvalue of a matrix is less than or equal to its largest singular value.
Hence, the proof follows immediately from Proposition 5.1. Note that there is one
special case when the CPD uniqueness condition fails, i.e.,

\sum 2N
n=1 kA(n) = 2R+2N - 2.

However, different CPDs, satisfying the orthonormal condition, correspond to the
same matrix SVD under \varphi up to some orthogonal transformations.

Appendix C. Numerical algorithms.

Algorithm C.1 Generalized TTD.

1: Given an even-order paired tensor \sansA \in \BbbR J1\times I1\times \cdot \cdot \cdot \times JN\times IN

2: Set \v \sansA = reshape(\sansA , J1I1, J2I2, . . . , JNIN )
3: Apply the standard TTD algorithm on \v \sansA such that

\v \sansA =

R0\sum 
r0=1

\cdot \cdot \cdot 
RN\sum 

rN=1

\v \sansA (1)
r0:r1 \circ \v \sansA (2)

r1:r2 \circ \cdot \cdot \cdot \circ \v \sansA (N)
rN - 1:rN

4: Set \sansA 
(n)
rn - 1::rn = reshape(\v \sansA 

(n)
rn - 1:rn , Jn, In) for n = 1, 2, . . . , N

5: return Component tensors \sansA (n) for n = 1, 2, . . . , N

D
ow

nl
oa

de
d 

02
/2

5/
21

 to
 1

41
.2

14
.1

7.
12

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

774 C. CHEN, A. SURANA, A. M. BLOCH, AND I. RAJAPAKSE

Algorithm C.2 Higher-Order Rayleigh Quotient Iteration.

1: Given an even-order square tensor \sansA \in \BbbR J1\times J1\times \cdot \cdot \cdot \times JN\times JN

2: Initialize \sansX 0 \in \BbbR J1\times J2\times \cdot \cdot \cdot \times JN with \| \sansX 0\| = 1
3: Compute \lambda 0 = \sansX \top 

0 \ast \sansA \ast \sansX 0

4: for k = 1, 2, . . . do
5: Solve (\sansA  - \lambda k - 1\sansI ) \ast \sansY = \sansX k - 1 using HOBG proposed in [3]
6: Set \sansX k = \sansY 

\| \sansY \| 
7: Compute \lambda k = \sansX \top 

k \ast \sansA \ast \sansX k

8: end for
9: return U-eigenvalue \lambda and U-eigentensor \sansX 

Appendix D. MATLAB functions.

D.1. The colon operator. The colon is one of the most useful operators in
MATLAB and can create vectors and subscript arrays and specify for iterations.
For our purpose, it acts as shorthand to include all subscripts in a particular array
dimension [32]. For example, A:i is equivalent to Aji for all j. In the following, we
represent TTD and generalized CPD and TTD in their componentwise forms:

1. (4.3) \leftrightarrow \sansX j1j2...jN =
\sum R0

r0=1 \cdot \cdot \cdot 
\sum RN

rN=1 \sansX 
(1)
r0j1r1

\sansX 
(2)
r1j2r2

. . .\sansX 
(N)
rN - 1jNrN

.

2. (6.1) \leftrightarrow \sansA j1i1...jN iN =
\sum R

r=1 \sansA 
(1)
rj1i1

\sansA 
(2)
rj2i2

. . .\sansA 
(N)
rjN iN

.

3. (6.2) \leftrightarrow \sansA j1i1...jN iN =
\sum R0

r0=1 \cdot \cdot \cdot 
\sum RN

rN=1 \sansA 
(1)
r0j1i1r1

\sansA 
(2)
r1j2i2r2

. . .\sansA 
(N)
rN - 1jN iNrN

.

D.2. The reshape operator. The command \sansB = reshape(\sansA , J1, J2, . . . , JN )
reshapes a tensor \sansA into a J1 \times J2 \times \cdot \cdot \cdot \times JN order tensor such that the number of
elements in \sansB matches the number of elements in \sansA [32].
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