# ODEs: Systems of Equations 

October 22, 2021

## Higher Order ODEs

- Most differential equations we encounter are of 2nd order or higher.

$$
y^{\prime \prime}-\lambda^{2} y=0
$$

- Our numerical algorithms only work on 1st order ODEs.
- We can convert a 2 nd order ode into a 1 st order ode by making the substitution

$$
z=y^{\prime}
$$

so that we have the system

$$
\binom{y^{\prime}}{z^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
\lambda^{2} & 0
\end{array}\right)\binom{y}{z}
$$

## Systems of ODEs

- We can also encounter systems of ODEs naturally. Consider the following problem:


## Systems of ODEs

- We can also encounter systems of ODEs naturally. Consider the following problem:
- Suppose we are modelling the spread of a disease. We might have a susceptible population $(S)$, an infected population $(I)$, and a recovered population $(R)$.
- The susceptible population gets infected at some rate $\alpha$, while the infected population gets cured at some rate $\beta$.


## Systems of ODEs

- We can also encounter systems of ODEs naturally. Consider the following problem:
- Suppose we are modelling the spread of a disease. We might have a susceptible population $(S)$, an infected population $(I)$, and a recovered population $(R)$.
- The susceptible population gets infected at some rate $\alpha$, while the infected population gets cured at some rate $\beta$.
- The ODE modelling such an event might be

$$
\left(\begin{array}{c}
S^{\prime} \\
I^{\prime} \\
R^{\prime}
\end{array}\right)=\left(\begin{array}{c}
-\alpha \frac{S I}{S+I+R} \\
\alpha \frac{S I}{S+I+R}-\beta I \\
\beta I
\end{array}\right)
$$



## Systems of ODEs

- We can use the same numerical methods for systems of ODEs. Consider the following ODE:

$$
\left(\begin{array}{c}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}, t\right) \\
f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}, t\right) \\
\vdots \\
f_{n}\left(y_{1}, y_{2}, \ldots, y_{n}, t\right)
\end{array}\right)
$$

- Forward Euler's method for this equation is

$$
\left(\begin{array}{c}
y_{1}^{m+1} \\
y_{2}^{m+1} \\
\vdots \\
y_{n}^{m+1}
\end{array}\right)=\left(\begin{array}{c}
y_{1}^{m}+f_{1}\left(y_{1}^{m}, y_{2}^{m}, \ldots, y_{n}^{m}, t_{m}\right) \\
y_{2}^{m}+f_{2}\left(y_{1}^{m}, y_{2}^{m}, \ldots, y_{n}^{m}, t_{m}\right) \\
\vdots \\
y_{n}^{m}+f_{n}\left(y_{1}^{m}, y_{2}^{m}, \ldots, y_{n}^{m}, t_{m}\right)
\end{array}\right)
$$

- We just apply forward Euler to each ODE independently.


## Systems of ODEs

- The same principle applies to any of the methods we talked about.
- Implicit methods are even more frustrating. It now involves solving a nonlinear system of equations.
- So for now, we'll stick to using explicit methods.

