Root Finding: Newton's Method

October 4, 2021

Root Finding: Newton's Method

Root Finding

Problem: Given a continuous function f(x), we want to find some value x^* such that $f(x^*) = 0$

Root Finding

- Problem: Given a continuous function f(x), we want to find some value x^* such that $f(x^*) = 0$
- Suppose we have some initial guess x_0 of the root.
- Taylor expand f(x) around x_0 :

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(x_0) + \cdots$$

If $x_0 - x$ is small enough, then $(x - x_0)^2$ is even smaller.

Root Finding

Neglecting the terms $(x - x_0)^n$ for n > 1 and letting f(x) = 0: $0 \approx f(x_0) + (x - x_0)f'(x_0)$

Solving for *x*:

$$x \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

• Let this new approximation to the root be x_1 and continue iteratively.

Newton's Method

Newton's Method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Error Analysis

- How good is this method for computing the root?
- Let x^* be the root of f(x), i.e. $f(x^*) = 0$.
- Taylor expand $f(x^*)$ around x_n , the *n*th iteration of the method:

$$0 = f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{(x^* - x_n)^2}{2}f''(\xi_n)$$

where ξ_n is between x_n and x^* .

Rearranging terms, we get that

$$\frac{f(x_n)}{f'(x_n)} + x^* - x_n = \frac{-f''(\xi_n)}{2f'(x_n)}(x^* - x_n)^2$$

Error Analysis

$$\frac{f(x_n)}{f'(x_n)} + x^* - x_n = \frac{-f''(\xi_n)}{2f'(x_n)}(x^* - x_n)^2$$

• Recall that $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

This gives us

$$x^{\star} - x_{n+1} = \frac{-f''(\xi_n)}{2f'(x_n)}(x^{\star} - x_n)^2$$

or by letting $e_n = x^* - x_n$ be the error at the *n*th step:

$$e_{n+1} = \frac{-f''(\xi_n)}{2f'(x_n)}e_n^2$$

The error decreases quadratically at each step.

- When do we stop the iterations? Let x^* be the root, i.e. $f(x^*) = 0$.
- Three ways to determine when we've done enough:
 1) |x^{*} x_n| < tol. If we are close enough to the root, we can stop.
 - 2) $|x_n x_{n-1}| < \text{tol.}$ Iterations are getting really close together.
 - 3) N is too big. Finding the root is taking to long.

- When do we stop the iterations? Let x^* be the root, i.e. $f(x^*) = 0$.
- Three ways to determine when we've done enough:
 1) |x^{*} − x_n| < tol. If we are close enough to the root, we can stop.
 - 2) $|x_n x_{n-1}| < \text{tol.}$ Iterations are getting really close together.
 - 3) N is too big. Finding the root is taking to long.
- We, in general, do not know x^* , so we need to use cases 2 and 3.