Root Finding: Newton's Method

October 4, 2021

Root Finding

- Problem: Given a continuous function $f(x)$, we want to find some value x^{\star} such that $f\left(x^{\star}\right)=0$

Root Finding

- Problem: Given a continuous function $f(x)$, we want to find some value x^{\star} such that $f\left(x^{\star}\right)=0$
- Suppose we have some initial guess x_{0} of the root.
- Taylor expand $f(x)$ around x_{0} :

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\cdots
$$

- If $x_{0}-x$ is small enough, then $\left(x-x_{0}\right)^{2}$ is even smaller.

Root Finding

- Neglecting the terms $\left(x-x_{0}\right)^{n}$ for $n>1$ and letting $f(x)=0$:

$$
0 \approx f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)
$$

- Solving for x :

$$
x \approx x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

- Let this new approximation to the root be x_{1} and continue iteratively.

Newton's Method

- Newton's Method:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Error Analysis

- How good is this method for computing the root?

Let x^{\star} be the root of $f(x)$, i.e. $f\left(x^{\star}\right)=0$.

- Taylor expand $f\left(x^{\star}\right)$ around x_{n}, the nth iteration of the method:

$$
0=f\left(x^{\star}\right)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x^{\star}-x_{n}\right)+\frac{\left(x^{\star}-x_{n}\right)^{2}}{2} f^{\prime \prime}\left(\xi_{n}\right)
$$

where ξ_{n} is between x_{n} and x^{\star}.

- Rearranging terms, we get that

$$
\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}+x^{\star}-x_{n}=\frac{-f^{\prime \prime}\left(\xi_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\left(x^{\star}-x_{n}\right)^{2}
$$

Error Analysis

$$
\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}+x^{\star}-x_{n}=\frac{-f^{\prime \prime}\left(\xi_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\left(x^{\star}-x_{n}\right)^{2}
$$

- Recall that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
- This gives us

$$
x^{\star}-x_{n+1}=\frac{-f^{\prime \prime}\left(\xi_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\left(x^{\star}-x_{n}\right)^{2}
$$

or by letting $e_{n}=x^{\star}-x_{n}$ be the error at the nth step:

$$
e_{n+1}=\frac{-f^{\prime \prime}\left(\xi_{n}\right)}{2 f^{\prime}\left(x_{n}\right)} e_{n}^{2}
$$

- The error decreases quadratically at each step.

Newton's Method

- When do we stop the iterations? Let x^{\star} be the root, i.e. $f\left(x^{\star}\right)=0$.
- Three ways to determine when we've done enough:

1) $\left|x^{\star}-x_{n}\right|<$ tol. If we are close enough to the root, we can stop.
2) $\left|x_{n}-x_{n-1}\right|<$ tol. Iterations are getting really close together.
3) N is too big. Finding the root is taking to long.

Newton's Method

- When do we stop the iterations? Let x^{\star} be the root, i.e. $f\left(x^{\star}\right)=0$.
- Three ways to determine when we've done enough:

1) $\left|x^{\star}-x_{n}\right|<$ tol. If we are close enough to the root, we can stop.
2) $\left|x_{n}-x_{n-1}\right|<$ tol. Iterations are getting really close together.
3) N is too big. Finding the root is taking to long.

- We, in general, do not know x^{\star}, so we need to use cases 2 and 3 .

