ODEs: Forward Euler

September 13, 2021

ODEs

- Consider an nth order ODE of the form

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}=f(t, y)
$$

- We can change this into a system of $n-1$ order ODEs by making the substitution $v=y^{(n)}$.
- Therefore we only really need to deal with first order ODEs.

Numerical ODEs

- Problem: Solve the ordinary differential equation $y^{\prime}(t)=f(y, t)$ with initial data $y(0)=y_{0}$ on the domain $[0, L]$

Numerical ODEs

- Problem: Solve the ordinary differential equation $y^{\prime}(t)=f(y, t)$ with initial data $y(0)=y_{0}$ on the domain $[0, L]$
- Consider the curve of $y(t)$ on $[0, L]$. We know the initial point of the curve $(0, y(0))$.
- We also know the value of the slope of the tangent line, $y^{\prime}(t)=f(y, t)$. We can compute the tangent line, and step forward a small amount on the tangent line.
- At our new step, we get the approximate value

$$
(d t, y(0)+\Delta t f(0, y(0)))
$$

Numerical ODEs

- Problem: Solve the ordinary differential equation $y^{\prime}(t)=f(y, t)$ with initial data $y(0)=y_{0}$ on the domain $[0, L]$
- Consider the curve of $y(t)$ on $[0, L]$. We know the initial point of the curve $(0, y(0))$.
- We also know the value of the slope of the tangent line, $y^{\prime}(t)=f(y, t)$. We can compute the tangent line, and step forward a small amount on the tangent line.
- At our new step, we get the approximate value

$$
(d t, y(0)+\Delta t f(0, y(0)))
$$

Numerical ODEs

- Problem: Solve the ordinary differential equation $y^{\prime}(t)=f(y, t)$ with initial data $y(0)=y_{0}$ on the domain $[0, L]$
- Consider the curve of $y(t)$ on $[0, L]$. We know the initial point of the curve $(0, y(0))$.
- We also know the value of the slope of the tangent line, $y^{\prime}(t)=f(y, t)$. We can compute the tangent line, and step forward a small amount on the tangent line.
- At our new step, we get the approximate value

$$
(d t, y(0)+\Delta t f(0, y(0)))
$$

Numerical ODEs

- Problem: Solve the ordinary differential equation $y^{\prime}(t)=f(y, t)$ with initial data $y(0)=y_{0}$ on the domain $[0, L]$
- Consider the curve of $y(t)$ on $[0, L]$. We know the initial point of the curve $(0, y(0))$.
- We also know the value of the slope of the tangent line, $y^{\prime}(t)=f(y, t)$. We can compute the tangent line, and step forward a small amount on the tangent line.
- At our new step, we get the approximate value

$$
(d t, y(0)+\Delta t f(0, y(0)))
$$

Euler's Method

- This leads us to the formulation $y_{n+1}=y_{n}+\Delta t f\left(t_{n}, y_{n}\right)$ where y_{n} is the $n^{\text {th }}$ approximation and $t_{n}=n \Delta t$.
- For example, the ODE $y^{\prime}=y$ with $y(0)=1$ has the formulation

$$
y_{n+1}=y_{n}+\Delta t y_{n}=y_{n}(1+\Delta t)
$$

Error of Euler's Method

- The Local Truncation Error is the error after one time step. Consider $y\left(t_{0}+\Delta t\right)$:

$$
\begin{aligned}
y\left(t_{0}+\Delta t\right) & =y\left(t_{0}\right)+\Delta t y^{\prime}\left(t_{0}\right)+\frac{1}{2}(\Delta t)^{2} y^{\prime \prime}\left(t_{0}\right)+\cdots \\
& =y\left(t_{0}\right)+\Delta t f\left(t_{0}, y_{0}\right)+\frac{1}{2}(\Delta t)^{2} y^{\prime \prime}\left(t_{0}\right)+\cdots
\end{aligned}
$$

- Then the local truncation error is

$$
\begin{aligned}
y_{1}-y\left(t_{0}+\Delta t\right) & =\left(y_{0}+\Delta t f\left(t_{0}, y_{0}\right)-\left(y_{0}+\Delta t f\left(t_{0}, y_{0}\right)+\frac{1}{2}(\Delta t)^{2} y^{\prime \prime}\left(t_{0}\right)+\cdots\right)\right. \\
& =-\frac{1}{2}(\Delta t)^{2} y^{\prime \prime}\left(t_{0}\right)+\cdots
\end{aligned}
$$

- So the local truncation error is second order.

Error of Euler's Method

- The Global Truncation Error is the error at the end of the simulation at time T.
- The total number of time steps to reach T is $\frac{T}{\Delta t}$.
- The local error at each time step is about $(\Delta t)^{2}$.
- Therefore, the global truncation error should be about Δt.

