Root Finding: Bisection Method

September 13, 2022

Root Finding

- Problem: Given a continuous function $f(x)$, we want to find some value x^{\star} such that $f\left(x^{\star}\right)=0$

Root Finding

- Problem: Given a continuous function $f(x)$, we want to find some value x^{\star} such that $f\left(x^{\star}\right)=0$
- Suppose we know two points a and b such that $f(a)$ and $f(b)$ are of different signs.
- For simplicity, suppose $f(a)<0$ and $f(b)>0$.
- Is there a root in between a and b ?

Bisection Method

- Is there a root in between a and b ?

Bisection Method

- Is there a root in between a and b ?
- Yes. This follows from the Intermediate Value Theorem:
- If $f(a)<u<f(b)$, then there exists a $c \in[a, b]$ such that $f(c)=u$.

Bisection Method

- How do we find the root between a and b ?

Bisection Method

\square How do we find the root between a and b ?
\square Idea: Find the value in between a and b, that is $c=\frac{a+b}{2}$.

- Three cases:
$-f(c)=0$: Then we're done!
$-f(c)<0$: Replace a with c.
$-f(c)>0$: Replace b with c.
- We can now proceed iteratively.

Bisection Method

- When do we stop the iterations? Let c^{\star} be the root, i.e. $f\left(c^{\star}\right)=0$.
- Three ways to determine when we've done enough:

1) $\left|c^{\star}-c\right|<$ tol. If we are close enough to the root, we can stop.
2) $\left|c_{n}-c_{n-1}\right|<$ tol. Iterations are getting really close together.
3) N is too big. Finding the root is taking to long.

Bisection Method

- When do we stop the iterations? Let c^{\star} be the root, i.e. $f\left(c^{\star}\right)=0$.
- Three ways to determine when we've done enough:

1) $\left|c^{\star}-c\right|<$ tol. If we are close enough to the root, we can stop.
2) $\left|c_{n}-c_{n-1}\right|<$ tol. Iterations are getting really close together.
3) N is too big. Finding the root is taking to long.

- We, in general, do not know c^{\star}, so we need to use cases 2 and 3 .

