Hwmk 6

Math 528 Summer Session 1

Due $5 / 28$ (Friday at $11: 59 \mathrm{pm}$)

1 CarnEvil Ride

Suppose you are designing a bungee carnival ride where the passenger and craft is pulled up and down by a large bungee cable suspended from a piston. To pick out the optimal engine designed to move the ride, you can study the differential equation

$$
m h^{\prime \prime}+\gamma h^{\prime}+k h=F_{0} \cos (\omega t)
$$

where $h(t)$ is your height as a function of time, m is the mass of the craft, γ is the dampening force, k is the spring constant of the bungee material, and F_{0} is the maximum force output of the engine. The weight of the craft is around 640 pounds. The spring constant of your bungee cable is $20 \mathrm{lbs} / \mathrm{ft}$. The dampening system reports a value of 200 pounds of force for an object moving $10 \mathrm{ft} / \mathrm{s}$. The last thing you will need is the following formula that provides the equation for the amplitude (C) of a forced, steady periodic oscillation:

$$
C=\frac{F_{0}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(\gamma \omega)^{2}}}
$$

(a) 1 point To begin this problem, use the following relationships and the data provided above, to solve for constants m and γ. Weight (W) is the measurement of force exerted by gravity (g) on your mass (m) thus: $W=m g$ (Note gravity is $32 \frac{f t}{s}$). The force exerted by your repelling device (here specified in pounds), is directly proportional to your velocity (v) thus: $W=\gamma v$.
(b) 1 point Using the calculated values, what frequency ω should the piston move to be at the same frequency of the system/ the homogeneous solution (this will keep the ride oscillations more predictable)?
(c) 1 point Using the calculated values (including ω), what should the maximum power output of the engine (F_{0}) be to reach a amplitude of 50 ft (height 100 ft)?
(d) 5 points With the calculated F_{0} above, solve the differential equation for your awesome ride using variation of parameters (find the particular solution). But wait... Oh no! The dampening system has malfunctioned making $\gamma=0$ (you will also need to recalculate the homogeneous here)! This happened at the peak height at $100 \mathrm{ft}\left(h(0)=100, h^{\prime}(0)=0\right)$. This problem will be difficult, feel free to use wolfram alpha or some other online calculator to calculate middle steps.
(e) 2 points At what speed will the riders meet their inevitable collision with the ground? This will be at the first intersection with $h=0$

