Hwmk 5

Math 528 Summer Session 1

Due $5 / 27$ (Friday at $11: 59 \mathrm{pm}$)

1 Short Circuit.... Work It

For a RLC Cicuit, we can model the current $I(t)$ via the differential equation:

$$
L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=E^{\prime}(t)
$$

where L is the inductance, R is the resistance, C is the capacitance, and E is the electromotive force. Suppose the resistance is 18 ohms, the inductance is 1 henry and the capacitance is $12.5 \cdot 10^{-3}$ farads. You have an alternating electromotive force $100 \sin (10 t)$ volts and our initial conditions are that $I(0)=0$ and $Q(0)=0$, where $Q(t)=\int I(t) d t$.
(a) 2 points What is the initial condition in terms of $I^{\prime}(t)$ (Check page 96 for help with this)?
(b) 2 points What is the solution to the homogeneous problem?
(c) 3 points What is the solution to the particular problem?
(d) 1 point Find the steady state solution by taking the limits of the general solution as $t \rightarrow \infty$.
(e) 2 points What other system does this ODE model? And what quantities would $L, R, 1 / C, E$ and I represent in this other model?

