Hwmk 2

Math 528 Summer Session 1

Due 5/24 (Monday at 11:59 pm)

1 Hot Pockets

Newtons law of cooling states that:

$$
\frac{d T(t)}{d t}=k\left(T(t)-T_{s}\right)
$$

where T is the temperature of an object as a function of time, k is an empirically measured value for the rate of heat entering or leaving the body, and T_{s} is the surrounding environment's temperature.
(a) 2 points Solve this differential equation for $T(t)$ using separation of variables.
(b) 2 points Now suppose we have some scorching hot bagel bites at 400 F , fresh out of the oven. I then place them in a vat of liquid nitrogen (which is -320 F) to rapidly cool them off. If from a home experiment, I found k to be -0.22 . How long will it take the bagel bites to reach a safe and delicious temperature of 115F? Note that the units of time (t) are in minutes. Fun fact: your mouth's threshold for being burned is just above this temperature.
(c) 1 point If you double the initial temperature of the bagel bites, by what percentage will the time required to reach 115 F increase?

2 Big Mistake

(a) 1 point Solve $y^{\prime}=y-e^{-9 x}$ with the condition that $y(0)=\frac{1}{10}$ analytically using integrating factors.
(b) 4 points Using Euler and Improved Euler's Method method with a step size of 0.5 , fill in the table below and find the relative percent error at $x=1$. Note that the relative percent error is the error divided by the exact value converted to a percentage. Round your values from Euler method to four decimals after each step in x, and round the percent error to the nearest integer.

Method	$@ x=0.5$	$@ x=1$	Relative Percent Error $@ x=1$
Euler's Method			
Improved Euler's Method			

