Hwmk 16

Math 528 Summer Session 1

Due 6/16 (Wednesday at 11:59 pm)

1 "There's Your Sine"

Find the Fourier series of the following functions:
(a) 2 points

$$
f(x)=|x| \quad \text { for } \quad-\pi<x<\pi \quad \text { and } \quad f(x+2 \pi)=f(x)
$$

(b) 2 points

$$
f(x)=1-\frac{x^{2}}{4} \quad \text { for } \quad-2<x<2 \quad \text { and } \quad f(x+4)=f(x)
$$

2 AC/DC

Suppose you have a RLC circuit component and you supply it an alternating current (AC). We can model the current in the component $I(t)$ via the differential equation:

$$
L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=E^{\prime}(t)
$$

where L is the inductance, R is the resistance, C is the capacitance, and E is the electromotive force. Suppose the resistance is 10 ohms , the inductance is 1 henry and the capacitance is 0.1 farads. You have an alternating electromotive force that is periodic with period 2π :

$$
E(t)= \begin{cases}100\left(t-t^{2}\right) & \text { if }-\pi<t<0 \\ 100\left(t+t^{2}\right) & \text { if } 0<t<\pi\end{cases}
$$

Initial conditions are that $I(0)=0$ and $Q(0)=0$ (where $\left.Q(t)=\int I(t) d t\right)$:
(a) 1 point Solve the homogeneous problem (the transient element)
(b) 2 points Transform $E^{\prime}(t)$ (the driver)
(c) 3 points Using a Fourier Series anzats, solve for the coefficients of your solution.

