Hwmk 1

Math 528 Summer Session 1

Due 5/21 (Friday at 11:59 pm)

1 French Gallagher

If dropping a watermelon off the Eiffel Tower, air resistance can be neglected for a modeling approximation. The equation to model the descent of the watermelon is a simplified equation:

$$
m \frac{d^{2} H(t)}{d t^{2}}=-m g
$$

where g is gravity (9.8 meters per second), t is time and H is the height of the watermelon. Assume that you drop the watermelon (with no initial velocity) from the top of the 984 meter Eiffel tower. Recall that $H(t)$ is position, its derivative is velocity, and its second derivative is acceleration.
(a) 4 points What speed will the watermelon have in the instant before impact with the ground?
(b) 1 point Why does it make sense that mass is not a part of the model solution?
(c) 1 point Is this ODE linear?
(d) 1 point Is the full ODE model below (with air Resistance) linear?

$$
m \frac{d^{2} H(t)}{d t^{2}}=m g-b \frac{d H(t)^{2}}{d t}
$$

(e) 2 points What is the percent increase in impact speed if the height is doubled?
(f) 1 point If kinetic energy is $\frac{1}{2} m v^{2}$, by what percent did the kinetic energy upon impact increase from the solutions to part (a) and part (f) ?

