Skip to content

Lessons

Go to Lesson

This Lesson Covers

  • What’s an Open Lab?
  • Why R?
  • Learning objectives for the semester
  • Setup: R, R Studio
  • A quick example

Go to Lesson
Download required data (listings.csv)

This Lesson Covers

  • Reproducibility
  • Projects in RStudio
  • Importing data
  • Objects and classes
  • Tables for categorical data
  • Exploring continuous data
  • Missing data
  • Saving output
  • ggplot (time allowing)

Go to Lesson
Download required data (Five Thousand Wine Reviews)

This Lesson Covers

  • Review: Starting a New Project in R, loading the tidyverse and importing data
  • Filtering
  • Relational and Assignment Operators
  • Reordering Data (arrange)
  • Selecting Data (select)
  • Renaming Columns
  • Adding New Variables
  • Summarizing Data
  • Piping

Optional Reading
R for Data Science Chapter 5

Go to Lesson
Download required data (Boston AirBnB Data)

This Lesson Covers

  • What is Exploratory Data Analysis?
  • What do we have? – dim, str, and summary
  • Frequency – Univariate EDA
  • Covariation – Two or more variables
  • Categorical vs Categorical Variables
  • Categorical vs Continuous Variables

Optional Reading
R for Data Science Chapter 7

Go to Lesson
Download required data (Brazilian E-Commerce)

This Lesson Covers

  • Merging / Joining Dataframes
  • Reshaping with tidyr
  • R Markdown
  • Markdown Syntax
  • Creating Reproducible Reports

Go to Lesson

This Lesson Covers

  • Terminology
  • Simple Linear Models with Plots
  • Multiple Regression – Formula notation in R
  • Modeling
  • Simulations
  • Reproducible simulations